Cho tích a.b là số chính phương và (a,b)=1. Chứng minh rằng a,b đều là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Đặt: a.b = c^2
Em tham khảo vào bài làm ở link: Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Chứng minh rằng nếu a,b đều là tổng của 2 số chính phương thì a.b cũng là tổng của 2 số chính phương
a=x²+y², b=m²+n² với x, y, m, n là số tự nhiên khác 0.
Ta có ab=(x²+y²)(m²+n²)=x²m²+x²n²+y²m²+y²n²
=x²m²+y²n²+2xymn+x²n²+y²m²-2xymn
=(xm+yn)²+(xn+ym)² (đpcm)
Gọi UCLN(a,c) = d => a = a1 d, c = c1 d.
=> ab = c
<=> a1 db = (c1 d)2
<=> a1 b = c12 d (1)
Từ (1) => a1 b chia hết cho c12 mà vì (a1, c1) = 1 nên b chi hết cho c12 (2)
Từ (1) ta lại => c12 d chia hết cho b mà vì (a,b) = 1 nên (b,d) = 1
=> c12 chia hết cho b (3)
Từ (2) và (3) => b = c12
Từ đề bài ta có
ab = c2
<=> ac12 = (c1 d)2
<=> a = d2
Vậy a, b là hai số chính phương
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath