Chứng minh rằng:
A=5+52+53+...+5100
ai trả lời nhanh nhất mình tích cho nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+5^2+5^3+...+5^{2021}\)
\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)
\(=5.6+5^2.6+...+5^{2020}.6\)
\(=6\left(5+5^2+...+5^{2020}\right)\)
Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6
⇒A không là số chính phương
cho C=5+52+53+54+...+520 chứng minh rằng:
a)C chia hết cho 5 b) C chia hết cho 6 c) C chia hết cho 13
\(a,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)⋮5\)
nên \(C⋮5\)
\(b,C=5+5^2+5^3+5^4\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdot\cdot\cdot+\left(5^{19}+5^{20}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdot\cdot\cdot+5^{19}\left(1+5\right)\)
\(=5\cdot6+5^3\cdot6+\cdot\cdot\cdot+5^{19}\cdot6\)
\(=6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)\)
Ta thấy: \(6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)⋮6\)
nên \(C⋮6\)
\(c,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)
\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\cdot\cdot\cdot+\left(5^{17}+5^{19}\right)+\left(5^{18}+5^{20}\right)\)
\(=5\left(1+5^2\right)+5^2\left(1+5^2\right)+\cdot\cdot\cdot+5^{17}\cdot\left(1+5^2\right)+5^{18}\left(1+5^2\right)\)
\(=5\cdot26+5^2\cdot26+\cdot\cdot\cdot+5^{17}\cdot26+5^{18}\cdot26\)
\(=26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)\)
Ta thấy: \(26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)⋮13\)
nên \(C⋮13\)
#\(Toru\)
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
câu1TỰ SỬ
câu 2 Ở đời mà có thói hung hãng bậy bạ , có óc mà không biết nghĩ , sớm muộn cũng mang vạ vào mình đấy
tốt bụng, hiền lành
câu 3
không nên có thói hung hãng bậy bạ
câu 4 biết nhận lỗi
mình là đại đó nếu đúng nhớ tisk nhé bạn
Bốn là tứ, ba là tam, tứ chia tam là tám chia tư:
8 : 4= 2
Vậy: 4 : 3=2
Dễ ẹt ! 4 là Tứ, 3 là Tam. Suy ra, Tứ chia Tam là Tám chia Tư mà 8 : 4 = 2(Hihi)
Dựa theo.... nha bn
a) M = \(5+5^2+5^3+...+5^{80}\)
\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)
\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)
=> M chi hết cho 6 => điều phải chứng minh
) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)
M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)
M= 5.6 + 5^3.6 + … + 5^79.6
M = 6(5+5^3+…+5^79) chia hết cho 6
b) Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
1) \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)
\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)
đề bài thiếu bạn ơi
sửa lại nhanh đi mình sẽ trả lời