K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2023

\(2x\cdot\dfrac{-4}{9}+2x\cdot\dfrac{-5}{9}=\dfrac{8}{11}\)

\(2x\cdot\left(\dfrac{-4}{9}+\dfrac{-5}{9}\right)=\dfrac{8}{11}\)

\(2x\cdot\left(-1\right)=\dfrac{8}{11}\)

2x = \(\dfrac{8}{11}:\left(-1\right)=\dfrac{-8}{11}\)

x = \(\dfrac{-8}{11}:2=\dfrac{-4}{11}\)

5 tháng 10 2021

a) \(\dfrac{x}{y}=\dfrac{9}{7}\)\(\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\)\(\dfrac{y}{7}=\dfrac{z}{3}\)

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

c: Ta có: 5x=8y=20z

nên \(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{5}}=\dfrac{y}{\dfrac{1}{8}}=\dfrac{z}{\dfrac{1}{20}}=\dfrac{x-y-z}{\dfrac{1}{5}-\dfrac{1}{8}-\dfrac{1}{20}}=\dfrac{3}{\dfrac{1}{40}}=120\)

Do đó: x=24; y=15; z=6

23 tháng 2 2022

a/

\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)

\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)

\(\Leftrightarrow6-6x=0\)

=> x=1

Làm có tâm ghê :)

6 tháng 10 2020

a) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 4

<=> x3 - 9x2 + 27x - 27 - ( x3 - 27 ) + 9( x2 + 2x + 1 ) = 4

<=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 = 4

<=> 45x + 9 = 4

<=> 45x = -5

<=> x = -5/45 = -1/9

b) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 17

<=> x( x2 - 25 ) - ( x3 + 8 ) = 17

<=> x3 - 25x - x3 - 8 = 17

<=> -25x - 8 = 17

<=> -25x = 25

<=> x = -1

19 tháng 7 2016

a)      \(2\left(x+5\right)-x^2-5x=0\)

  \(\Leftrightarrow2x+10-x^2-5x=0\)

 \(\Leftrightarrow-x^2-3x+10=0\)

\(\Leftrightarrow x^2+3x-10=0\)

 \(\Leftrightarrow x^2-2x+5x-10=0\)

\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)

b) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

c)\(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)

\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)

d) \(x^3+x=0\)

\(\Leftrightarrow x^2\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

e)\(x^2-2x-3=0\)

\(\Leftrightarrow x^2+x-3x-3=0\)

\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)

19 tháng 7 2016

Cảm ơn bạn nha

27 tháng 6 2023

a, 2\(xy\) - 2\(x\) + 3\(y\) = -9

(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12

2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12

(\(y-1\))(2\(x\) + 3) = -12

Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

Lập bảng ta có:

\(y\)-1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(y\) -11 -5 -3 -2 -1 0 2 3 4 5 7 13
2\(x\)+3 1 2 3 4 6 12 -12 -6 -4 -3 -2 -1
\(x\) -1 -\(\dfrac{1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{3}{2}\) \(\dfrac{9}{2}\) \(-\dfrac{15}{2}\) \(-\dfrac{9}{2}\) -\(\dfrac{7}{2}\) -3 \(-\dfrac{5}{2}\) -2

Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)

 

  
 

 

 

          

 

    

27 tháng 6 2023

b, (\(x+1\))2(\(y\) - 3) = -4 

    Ư(4) = {-4; -2; -1; 1; 2; 4}

Lập bảng ta có: 

\(\left(x+1\right)^2\) - 4(loại) -2(loại) -1(loại) 1 2 4
\(x\)       0 \(\pm\)\(\sqrt{2}\)(loại) 1; -3
\(y-3\) 1 2 4 -4 -2 -1
\(y\)       -1   2

Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (0; -1); (-3; 2); (1; 2)

 

19 tháng 10 2016

x=5/3

24 tháng 8 2020

Có gì khó đâu bạn -..-

( 2x + 5 )( 2x - 7 ) - ( -4x - 3 )2 = 16

<=> 2x( 2x - 7 ) + 5( 2x - 7 ) - [ (-4x)2 - 2.3.(-4x) + 32 ] = 16

<=> 4x2 - 14x + 10x - 35 - [ 16x2 + 24x + 9 ] = 16

<=> 4x2 - 4x - 35 - 16x2 - 24x - 9 = 16

<=> -12x2 - 28x - 44 - 16 = 0

<=> -12x2 - 28x - 60 = 0

<=> -4( 3x2 + 7x + 15 ) = 0

<=> 3x2 + 7x + 15 = 0

Ta có : 3x2 + 7x + 15 = 3( x2 + 7/3x + 49/36 ) + 131/12 = 3( x + 7/6 )2 + 131/12 ≥ 131/12 > 0 ∀ x

=> Vô nghiệm 

24 tháng 8 2020

\(4x^2-14x+10x-35-\left(16x^2+24x+9\right)=16\) 

\(4x^2-4x-35-16x^2-24x-9-16=0\)           

\(-12x^2-28x-60=0\) 

\(-4\left(3x^2+7x+15\right)=0\) 

\(3x^2+7x+15=0\) 

\(3\left(x^2+\frac{7}{3}x+5\right)=0\) 

\(x^2+\frac{7}{3}x+5=0\) 

\(x^2+2\cdot x\cdot\frac{7}{6}+\left(\frac{7}{6}\right)^2-\left(\frac{7}{6}\right)^2+5=0\) 

\(\left(x+\frac{7}{6}\right)^2+\frac{131}{36}=0\)  

\(\left(x+\frac{7}{6}\right)^2=-\frac{131}{36}\) ( vô lí vì \(\left(x+\frac{7}{6}\right)^2\ge0\forall x\)  ) 

Vậy phương trình vô nghiệm