Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho A= n^3+3n^2+2n
a) cmr A chia hết cho 3 với mọi n
b) tìm n thuộc N, n<10 để A chia hết cho 15
\(A=n\left(n+1\right)\left(n+2\right)\)
\(\text{a) }n;\text{ }n+1;\text{ }n+2\text{ là 3 số tự nhiên liên tiếp nên 1 trong 3 số chia hết cho 3.}\)
\(\Rightarrow A=n\left(n+1\right)\left(n+2\right)\text{ chia hết cho 3}\)
\(\text{b) Để A chia hết cho 15 thì A cần chia hết cho 5 (vì A luôn chia hết cho 3)}\)
\(\Rightarrow\text{1 trong 3 số }n;n+1;n+2\text{ phải chia hết cho 5.}\)
\(\Rightarrow n;n+1;n+2=5\text{ hoặc 10}\)
\(\Rightarrow n\in\left\{3;4;5;8;9\right\}\)
Cho A = n^3 + 3n^2 + 2n
a/ CMR: A chia hết cho 3 với mọi số nguyên n
b/ Tìm n thuộc N* ; n>0 để A chia hết cho 15
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N) Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z Bài 13: m, n thuộc N sao cho 24m^4+1=n^2 CMR: mn chia hết cho 5 Bài 14: 17^19+19^17 chia hết cho 18 Bài 15: Cho A=1^3+2^3+3^3+...+100^3 B=1+2+3+...+100 CMR: A chia hết cho B
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵnBài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc ZBài 13: m, n thuộc N sao cho 24m^4+1=n^2CMR: mn chia hết cho 5Bài 14: 17^19+19^17 chia hết cho 18Bài 15: Cho A=1^3+2^3+3^3+...+100^3 B=1+2+3+...+100CMR: A chia hết cho B
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
CMR: A= 7n + 3n-1 chia hết cho 9 (với mọi n thuộc N)
CMR: B= 4n + 15n-1 chia hết cho 9 (với mọi n thuộc N*)
1 CMR
a) (n+20152016)+(n+20152016) chia hết cho 2 với mọi n thuộc N
b) n2+5n+7 không chia hết cho 2 với mọi n thuộc N
c)n(n+1)+1 không chia hết cho 5 với mọi n thuộc N
d)n2+n+2 không chia hết cho 15 với mọi n thuộc N
e)n2+n+2 không chia hết cho 3 với mọi n thuộc N
f)n2+n+1 không chia hết cho 5 với mọi n thuộc N
2 CMR
a)n2+11n+39 không chia hết cho 49 với mioj n thuộc N
b)n2-n+10 không chia hết cho 169 với mọi n thuộc N
c)n2+3n+5 không chia hết cho 121 với mọi n thuộc N
d)4n2+8n-6 không chia hết cho 25 với mọi n thuộc N
e)n2-5n-49 không chia hết cho 169 với mọi n thuộc N
CMR:
a)n^3+3n^2-n+3 chia hết cho 48 với mọi n lẻ
b)n^4+4n^3-4n^2-16n chia hết cho 384 với mọi n chẵn
cho A=n3+3n2+2n
cmr A chia hết cho 3 với mọi n
tìm n < 10 để n chia hết cho 15
\(A=n\left(n+1\right)\left(n+2\right)\)
\(\text{a) }n;\text{ }n+1;\text{ }n+2\text{ là 3 số tự nhiên liên tiếp nên 1 trong 3 số chia hết cho 3.}\)
\(\Rightarrow A=n\left(n+1\right)\left(n+2\right)\text{ chia hết cho 3}\)
\(\text{b) Để A chia hết cho 15 thì A cần chia hết cho 5 (vì A luôn chia hết cho 3)}\)
\(\Rightarrow\text{1 trong 3 số }n;n+1;n+2\text{ phải chia hết cho 5.}\)
\(\Rightarrow n;n+1;n+2=5\text{ hoặc 10}\)
\(\Rightarrow n\in\left\{3;4;5;8;9\right\}\)