K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2023

Ta có : A là giao điểm của 2 đường tiếp tuyến tại E và G của O =>AG=AE

Chứng minh tương tự,ta được BE=BH

=>AG+BH=AB

Tương tự,ta có DG+HC=CD

=>AB+CD=AD+BC=10cm

nửa đường tròn  tâm G: 2AG.π/2=AG.π=1/2.AD.π

nửa đường tròn tâm H:1/2.BC.π

=> S=1/2(AD+BC)π=5πloading...

3 tháng 1 2017

Đặt AB = a; BC = b; CD = c; AD = d

C A B 2 = 2 π . a 2 2 = π . a 2 . Tương tự  C C D 2 = π . c 2

Vậy  C A B 2 + C C D 2 = π 2 a + c

Có  C B C 2 + C C D 2 = π 2 b + d

Tứ giác ABCD ngoại tiếp, kết hợp tính chất tiếp => a + c = b + d => ĐPCM

24 tháng 9 2017

a, Chứng minh được DBOF nội tiếp đường tròn tâm I là trung điểm của DO

b,  O A = O F 2 + A F 2 = 5 R 3 =>  cos D A B ^ = A F A O = 4 5

c, ∆AMO:∆ADB(g.g) =>  D M A M = O B O A

mà M O D ^ = O D B ^ = O D M ^ => DM = OM

=>  D B D M = D B O M = A D A M . Xét vế trái  B D D M - D M A M = A D - D M A M = 1

d,  D B = A B . tan D A B ^ = 8 R 3 . 3 4 = 2 R => O M = A O . tan D A B ^ = 5 R 4

=>  S O M D B = 13 R 2 8

S O M D B ngoài = S O M D B - 1 4 S O , R = R 2 8 13 - 2 π

27 tháng 11 2021

a, 700 góc nào bạn ? 

b, Vì AB là tiếp tuyến (O) => ^ABO = 900 

AO giao BC = K 

AB = AC ; OB = OC = R 

Vậy OA là đường trung trực đoạn BC 

Xét tam giác ABO vuông tại B, đường cao BK

Áp dụng định lí Pytago tam giác ABO vuông tại B 

\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm 

Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm 

Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm 

Chu vi tam giác ABC là :

 \(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm 

16 tháng 8 2016

A B D C M

1. Ta có  AD // OM // BC ; OA = OB

=> OM là đường trung bình của hình thang ABCD => M là trung điểm CD => MC = MD

2. Vì OM là đường trung bình của hình thang ABCD nên : \(OM=\frac{AD+BC}{2}\Rightarrow AD+BC=2OM\)không đổi. 

3. Dễ thấy M là tâm của đường tròn đường kính CD vì MC = MD

Lại có AD vuông góc với MD => đpcm

4. Ta có : \(S_{ABCD}=\frac{1}{2}.\left(AD+BC\right).CD=OM.CD\)

Vì OM không đổi nên S.ABCD lớn nhất <=> CD lớn nhất <=> CD = AB

Vậy max (S.ABCD) = OM . AB = R.(2R) = 2R2 với R = AB/2

11 tháng 2 2017

ok

a: 

ΔABC vuông tại A có AB=AC

nên ΔABC vuông cân tại A

=>góc ABC=góc ACB=45 độ

góc BDA=1/2*sđ cung BA=90 độ

góc EAC=1/2*sđ cung CA=90 độ

BD vuông góc DA

CE vuông góc AE

mà D,A,E thẳng hàng

nên BD//CE

Xét tứ giác BDEC có

góc BDE+góc DEC+góc DBC+góc ECB=360 độ

=>góc DBC+góc ECB=180 độ

=>góc ECA+góc ACB+góc ABD+góc ABC=180 độ

=>góc ECA+góc ABD=90 độ

góc EAC+góc ECA=90 độ

mà góc DBA+góc ECA=90 độ

nên góc EAC=góc DBA

Xét ΔACE vuông tại E và ΔBAD vuông tại D có

AC=AB

góc EAC=góc DBA

=>ΔACE=ΔBAD

=>AD=CE

b: AD^2+AE^2

=CE^2+AE^2

=AC^2=16

28 tháng 8 2023

bạn học thầy nguyên à?