Giải phương trình nghiệm nguyên dương:2x+3y+4xy=9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^2+3xy+3y^2+xy-2x-6y=5\)
\(\Leftrightarrow x\left(x+3y\right)+y\left(x+3y\right)-2\left(x+3y\right)=5\)
\(\Leftrightarrow\left(x+y-2\right)\left(x+3y\right)=5\)
Bảng giá trị:
x+y-2 | -5 | -1 | 1 | 5 |
x+3y | -1 | -5 | 5 | 1 |
x | -4 | 4 | 2 | 10 |
y | 1 | -3 | 1 | -3 |
Vậy \(\left(x;y\right)=\left(-4;1\right);\left(4;-3\right);\left(2;1\right);\left(10;-3\right)\)
\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)
=> phương trình ước số
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
a.ta có \(\left(x+3\right)\left(y-7\right)=-21\Rightarrow y-7\in\left\{-3,-1\right\}\) ( do x+3>3 và 0>y-7>-7)
\(\Rightarrow\hept{\begin{cases}y=4\\x=4\end{cases}\text{ hoặc }}\hept{\begin{cases}y=6\\x=18\end{cases}}\)
c. \(\left(x-5\right)\left(y-5\right)=26=2\cdot13\Rightarrow x-5\in\left\{-2,-1,1,2,13,26\right\}\)
suy ra \(\left(x,y\right)\in\left\{\left(6,31\right);\left(31,6\right);\left(7,18\right);\left(18,7\right)\right\}\)
b.\(4xy+5y-14x=3\Leftrightarrow8xy+10y-28x=6\)
\(\Leftrightarrow\left(4x+5\right)\left(2y-7\right)=-29\)
mà 4x+5>5\(\Rightarrow4x+5=29\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
\(\Leftrightarrow\left(2x^2-3\right)y=x^2+1\)
\(\Leftrightarrow y=\dfrac{x^2+1}{2x^2-3}\)
\(y\in Z\Rightarrow2y\in Z\Rightarrow\dfrac{2x^2+2}{2x^2-3}\in Z\Rightarrow1+\dfrac{5}{2x^2-3}\in Z\)
\(\Rightarrow2x^2-3=Ư\left(5\right)=\left\{-1;1;5\right\}\)
\(\Rightarrow x^2=\left\{1;2;4\right\}\Rightarrow x=\left\{1;2\right\}\)
- Với \(x=1\Rightarrow y=-2< 0\left(loại\right)\)
- Với \(x=2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
Ta có: \(2x+3y=11\Leftrightarrow x=\frac{11-3y}{2}=5-y+\frac{1-y}{2}\).
Vì \(x\) và \(y\) nguyên nên \(\frac{1-y}{2}\) nguyên. Đặt \(\frac{1-y}{2}=t\left(t\inℤ\right)\)
\(\Rightarrow y=1-2t\)
\(\Rightarrow x=5-\left(1-2t\right)+\frac{1-\left(1-2t\right)}{2}=5-1+2t+t=3t+4\).
Vậy nghiệm của phương trình trên là: \(\hept{\begin{cases}x=3t+4\\y=-2t+1\end{cases}}\left(t\inℤ\right)\).
<=> 2x(4y+2)=2(9-3y)
=> 4x=\(-\frac{6y-18}{2y+1}=-\frac{6y+3-21}{2y+1}=-3+\frac{21}{2y+1}\)
Để x nguyên thì 4x nguyên, hay 21 phải chia hết cho 2y+1 => 2y+1={-21; -7; -3; -1; 1; 3; 7; 21}
Do x nguyên dương nên ta chỉ chọn được kết quả: 2y+1={3; 7} => y={1; 3}
+/ y=1=> x=1; y=3 => x=0
Các cặp x, y thỏa mãn là: {1; 1}; {0; 3}