cho hình vuông ABCD cạnh là 20 cm . m là trung điểm của của AB . Điểm N nằm trên BC sao cho BN = 4NC . Tinh diện tích tam giác DMN
Gải nhanh giúp mik
Ai nhanh nhát mik tick
9 giờ tối nay nha mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai tg AMC và tg ABC có chung đường cao từ C->AB nên
\(\dfrac{S_{AMC}}{S_{ABC}}=\dfrac{AM}{AB}=\dfrac{1}{3}\Rightarrow S_{AMC}=\dfrac{1}{3}xS_{ABC}\)
Hai tg AMN và tg AMC có chung đường cao từ A->CM nên
\(\dfrac{S_{AMN}}{S_{AMC}}=\dfrac{MN}{MC}=\dfrac{1}{2}\Rightarrow S_{AMN}=\dfrac{1}{2}xS_{AMC}=\dfrac{1}{2}x\dfrac{1}{3}xS_{ABC}=\dfrac{1}{6}xS_{ABC}\)
\(S_{BMC}=S_{ABC}-S_{AMC}=S_{ABC}-\dfrac{1}{3}xS_{ABC}=\dfrac{2}{3}xS_{ABC}\)
Hai tg BMN và tg BMC có chung đường cao từ B->MC nên
\(\dfrac{S_{BMN}}{S_{BMC}}=\dfrac{MN}{MC}=\dfrac{1}{2}\Rightarrow S_{BMN}=\dfrac{1}{2}xS_{BMC}=\dfrac{1}{2}x\dfrac{2}{3}xS_{ABC}=\dfrac{1}{3}xS_{ABC}\)
\(S_{ANB}=S_{AMN}+S_{BMN}=\dfrac{1}{6}xS_{ABC}+\dfrac{1}{3}xS_{ABC}=\dfrac{1}{2}xS_{ABC}=40cm^2\)
a: \(S_{AMD}=\dfrac{1}{2}\cdot8,1\cdot2,7=10,935\left(cm^2\right)\)
\(S_{BMN}=\dfrac{1}{2}\cdot5,4\cdot5,4=14,58\left(cm^2\right)\)
\(S_{NCD}=\dfrac{1}{2}\cdot8,1\cdot2,7=10,935\left(cm^2\right)\)
S ABCD=8,1^2=65,61cm2
=> S DMN=65,61-10,935*2-14,58=29,16cm2
b: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC
=>MN vuông góc BD
ΔBMN cân tại B
mà BElà đường cao
nên E là trung điểm của MN
=>EM=EN
mik thấy nó cứ sai sai thế nào ấy ,bạn chỉ cho mik tam giác BMN đi ???
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Lê Hoàng - Toán lớp 5 - Học toán với OnlineMath