K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

mấy cái có ảnh là phải tải ảnh chớ copy thì ko thấy đc, mình bị ròi.

Ko nhìn đc ảnh để làm đâu

6 tháng 7 2024

Bài 2:

\(x\) bằng bao nhiêu em nhỉ???

17 tháng 7 2023

Câu 1:

\(A\left(x\right)+B\left(x\right)\)

\(=\left(6x-4x^3+x-1\right)+\left(-3x-2x^3-5x^2+x+2\right)\)

\(=\left(6x+-3x+x\right)-\left(4x^3+2x^3\right)-5x^2+\left(-1+2\right)\)

\(=-6x^3-5x^2+4x+1\)

\(A\left(x\right)-B\left(x\right)\)

\(=\left(6x-4x^3+x-1\right)-\left(-3x-2x^3-5x^2+x+2\right)\)

\(=\left(-4x^3+2x^3\right)+5x^2+\left(6x+x-x\right)+\left(-1-2\right)\)

\(=-2x^3+5x^2+6x-3\)

27 tháng 9 2021

Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))

a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)

b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)

27 tháng 9 2016

Ko hieu đề 

18 tháng 3 2020

Ta có: a+b+c=1 <=>(a+b+c)2 = 1 <=> ab+bc+ca=0 (1)
Theo dãy tỉ số bằng nhau ta có:
xa=yb=zc=x+y+za+b+c=x+y+z1=x+y+zxa=yb=zc=x+y+za+b+c=x+y+z1=x+y+z
<=> x = a(x+y+z) ; y = b(x+y+z) ; z = c(x+y+z)
=> xy+yz+zx= ab(x+y+z)2+bc(x+y+z)2+ca(x + y + z)2
<=> xy+yz+zx =(ab+bc+ca)(x+y+z)2 (2)
từ (1) và (2) => xy + yz + zx = 0

15 tháng 1 2021

Ta có \(\dfrac{\left(x^2-yz\right)^2}{a^2}=\dfrac{\left(y^2-zx\right)\left(z^2-xy\right)}{bc}\) mà a2 = bc nên:

\(\left(x^2-yz\right)^2=\left(y^2-zx\right)\left(z^2-xy\right)\).

\(\Leftrightarrow x^4+y^2z^2-2x^2yz=y^2z^2+x^2yz-xy^3-xz^3\)

\(\Leftrightarrow x^4+xy^3+xz^3-3x^2yz=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3+y^3+z^3=3xyz\end{matrix}\right.\).

Rõ ràng nếu \(x^3+y^3+z^3=3xyz\) thì \(x=y=z\) (tính chất quen thuộc). Do đó \(\dfrac{x^2-yz}{a}=0\) (vô lí).

Do đó x = 0.

Kết hợp với x + y + z = 2010 thì y + z = 2010.

Rõ ràng với mọi x, y, z thỏa mãn y + z = 2010 và x = 0 thì ta thấy thỏa mãn đk bài toán.

Vậy...