K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH1: (2y+1)^2=9 và (2x+2y)^2=0

=>x+y=0 và \(2y+1\in\left\{3;-3\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-1;1\right);\left(2;-2\right)\right\}\)

TH2: (2y+1)^2=0 và (2x+2y)^2=9

=>\(\left(2y+1;2x+2y\right)\in\left\{\left(0;3\right);\left(0;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(-\dfrac{1}{2};2\right);\left(-\dfrac{1}{2};-1\right)\right\}\)

a: A=(-x)^3+3*(-x)^2*2+3*(-x)*2^2+2^3=(-x+2)^3

=(28+2)^3=30^3=27000

b: \(C=\left(x+2y-2\right)^3=\left(20+2\cdot9-2\right)^3\)

=36^3

c: 11^3-1

=(11-1)(11^2+11+1)

=10*(121+12)

=1330

d: x^3-y^3=(x-y)^3+3xy(x-y)

=6^3+3*6*9

=216+162

=378

7 tháng 10 2021

h) \(=3x\left(2y-3z\right)\left[x^2-5\left(2y-3z\right)\right]=3x\left(2y-3z\right)\left(x^2-10y+15z\right)\)

k) \(=\left(x+2\right)\left(3x-5\right)\)

l) \(=\left(18^2+3\right)\left(x+3\right)=327\left(x+3\right)\)

m) \(=7xy\left(2x-3y+4xy\right)\)

n) \(=2\left(x-y\right)\left(5x-4y\right)\)

30. Viết pt tham số của đg thẳng đi qua 2 điểm A ( 3;-7) và B(1;-7) A. x =t ; y =-7 B. x=t ; y =7 C. x=t ; y = -7-t D. x = 3-7t; y = 1-7t 31. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg trung trực của đoạn thẳng AB với A(2;3) và B(-4;-1). A. 3x - 2y +5 =0 B. 3x - 2y -5=0 C. 3x +2y +1 =0 D. 3x +2y -1=0 32. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng đi qua giao điểm của d1 : 3x - 5y +2=0 và d2 : 5x...
Đọc tiếp

30. Viết pt tham số của đg thẳng đi qua 2 điểm A ( 3;-7) và B(1;-7)

A. x =t ; y =-7

B. x=t ; y =7

C. x=t ; y = -7-t

D. x = 3-7t; y = 1-7t

31. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg trung trực của đoạn thẳng AB với A(2;3) và B(-4;-1).

A. 3x - 2y +5 =0

B. 3x - 2y -5=0

C. 3x +2y +1 =0

D. 3x +2y -1=0

32. Trong mặt phẳng toạ độ Oxy , viết pt tổng quát của đg thẳng đi qua giao điểm của d1 : 3x - 5y +2=0 và d2 : 5x -2y +4=0 đồng thời sống song với đg thẳng d3 : 2x - y +4=0

A. 2x - y + 30/19 =0

B. 2x -y - 30/19=0

C. x +2y + 30/19=0

D. x +2y - 30/19=0

33. Trong mặt phẳng toạ độ Oxy , cho tg ABC với A(-1;2), B(1;1) , C(2;-1) . Viết pt tổng quát đg cao AH của tg ABC.

A. AH : x -2y +3=0

B. AH: 2x +y =0

C. AH : x -2y +5=0

D. AH: 2x - y +4 =0

34. Cho tg ABC có toạ độ các đỉnh là A(-1;1) và B(4;7) , C( 3;-2), M là trung điểm của đoạn thẳng AB. Viêt pt tham số của đg thẳng CM.

A. x = 3+t ; y = -2-4t

B. x = 3+t ;y = -2 + 4t

C. x = 3-t ; y = 4+2t

D. x = 3+3t ; y = -2+4t

2
NV
11 tháng 4 2020

Câu 32:

Gọi M là giao điểm d1;d2 thì tọa độ M là nghiệm của hệ:

\(\left\{{}\begin{matrix}3x-5y+2=0\\5x-2y+4=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{16}{19};-\frac{2}{19}\right)\)

Do d song song d3 nên d nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d:

\(2\left(x+\frac{16}{19}\right)-1\left(y+\frac{2}{19}\right)=0\Leftrightarrow2x-y+\frac{30}{19}=0\)

Câu 33:

\(\overrightarrow{BC}=\left(1;-2\right)\)

Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt

Phương trình AH:

\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)

Câu 34:

Tọa độ M là: \(M\left(\frac{3}{2};4\right)\)

\(\overrightarrow{CM}=\left(-\frac{3}{2};6\right)=-\frac{3}{2}\left(1;-4\right)\)

Phương trình tham số CM: \(\left\{{}\begin{matrix}x=3+t\\y=-2-4t\end{matrix}\right.\)

NV
11 tháng 4 2020

Câu 30:

\(\overrightarrow{AB}=\left(-2;0\right)=-2\left(1;0\right)\) nên đường thẳng AB nhận \(\left(1;0\right)\) là 1 vtcp

Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-7\end{matrix}\right.\)

Cả 4 đáp án đều ko chính xác

Câu 31:

Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)

\(\overrightarrow{AB}=\left(-6;-4\right)=-2\left(3;2\right)\Rightarrow\) đường trung trực AB nhận \(\left(3;2\right)\) là 1vtpt

Phương trình:

\(3\left(x+1\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y+1=0\)

14 tháng 9 2021

Sửa đề: \(\left(4-\dfrac{u}{2}\right)\left(\dfrac{u^2}{4}+2u+16\right)=4^3-\left(\dfrac{u}{2}\right)^3=64-\dfrac{u^3}{8}\)

 

16 tháng 7 2021

x : y : z = 3 : 4 : 5

=>\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Ta có:\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}\)

ADTCDTSBN:

\(\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2-3z^2}{18+32+75}=\dfrac{-4}{5}\)

\(\dfrac{x}{3}=\dfrac{-4}{5}\Rightarrow x=\dfrac{-12}{5}\)

\(\dfrac{y}{4}=\dfrac{-4}{5}\Rightarrow y=\dfrac{-16}{5}\)

\(\dfrac{z}{5}=\dfrac{-4}{5}\Rightarrow z=-4\)

16 tháng 7 2021

\(x:y:z=3:4:5=>\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

\(=>x=\dfrac{3y}{4},z=\dfrac{5y}{4}\) thay x,z vào \(2x^2+2y^2-3z^2=-100\)

\(< =>2\left(\dfrac{3y}{4}\right)^2+2y^2-3\left(\dfrac{5y}{4}\right)^2=-100\)

\(=>y=\pm8\)

* với y=8 \(=>x=\dfrac{3.8}{4}=6,z=\dfrac{5.8}{4}=10\)

* với y=-8 \(=>x=-6,z=-10\)

Tìm x,y \(\in\) Z thôi nhỉ ?

a, ( 2x + 1 ).( 4 - y ) = 10

= > ( 2x + 1 ) , ( 4 - y ) \(\inƯ\left(10\right)\in\left\{-10;-5;-2;-1;1;2;5;10\right\}\) thỏa mãn \(\left(2x+1\right)\left(4-y\right)=10\)

Đến đây em lập bảng xét 8 TH ( 2x + 1 ) , ( 4 - y ) \(\in\left\{\left(-10;-1\right);\left(-1;-10\right);\left(-5;-2\right);\left(-2;-5\right);\left(1;10\right);\left(10;1\right);\left(2;5\right);\left(5;2\right)\right\}\)

rồi tìm ra x,y nhé !

b, 2x - 4 + xy - 2y = -3

<=> 2( x - 2 ) + y( x - 2 ) = -3

<=> ( x - 2 ) ( 2 + y ) = -3

Tương tự câu a,

 

 

 

 

24 tháng 8 2017

bài đầu tiên bằng -3

bài thứ hai mình ko biết

25 tháng 8 2017

Dễ =))

2:

a: A(x)=0

=>5x-10-2x-6=0

=>3x-16=0

=>x=16/3

b: B(x)=0

=>5x^2-125=0

=>x^2-25=0

=>x=5 hoặc x=-5

c: C(x)=0

=>2x^2-x-3=0

=>2x^2-3x+2x-3=0

=>(2x-3)(x+1)=0

=>x=3/2 hoặc x=-1