K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2023

giúp câu d nha

 

 

a: Xét (O) có

ΔCKN nội tiếp

CN là đường kính

=>ΔCKN vuông tại K

Xét tứ giác ABCK co

góc CKB=góc CAB=90 độ

=>ABCK là tứ giác nội tiếp

b: ABCK là tứ giác nội tiếp

=>góc ABK=góc ACK

c: ABCK là tư giác nội tiếp

=>góc ACB=góc AKB

mà góc AKB=góc HCA

nên góc HCA=góc BCA

=>CA làphân giác của góc HCB

10 tháng 8 2018

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

 Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ A ∈ đường tròn đường kính BC.

D ∈ đường tròn đường kính MC

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ D ∈ đường tròn đường kính BC

⇒ A, B, C, D cùng thuộc đường tròn đường kính BC

hay tứ giác ABCD nội tiếp.

a: góc BEC=1/2*sđ cug CB=90 độ

=>CE vuông góc AB

góc BKC=1/2*sđ cung BC=90 độ

=>BK vuông góc AC

Xet ΔABC co

BK,CE là đường cao

BK cắt CE tại H

=>H là trực tâm

=>AF vuông góc BC tại F

góc AEC=góc AFC=90 độ

=>AEFC nội tiếp

b: góc EFA=góc ABK

góc KFA=góc ACE

mà góc ABK=góc ACE

nên góc EFA=góc KFA

=>FA là phân giác của góc EFK

c: góc BEF=góc BCA

góc AEK=góc ACB

=>góc FEK=180 độ-2*góc BCA

=góc KOC

=>góc FEK+góc KOF=180 độ

=>EKOF nội tiếp

a: góc AMH+góc ANH=180 độ

=>AMHN nội tiếp

b: Vì góc BMC=góc BNC=90 độ

nên BMNC nội tiếp

=>góc HMN=góc HBC

mà goc MHN=góc BHC

nên ΔHMN đồng dạng vơi ΔHBC

=>HM/HB=MN/BC

=>HM*BC=HB*MN

c: góc NMH=góc HAC

góc KMH=góc NBC

mà góc HAC=góc NBC

nên góc NMH=góc KMH

=>MH là phân giác của góc NMK(1)

góc MKH=góc ABN

góc NKH=góc ACM

góc ABN=góc ACM

Do đó: góc MKH=góc NKH

=>KH là phân giác của góc MKN(2)

Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔKMN

a: góc KHB=1/2*180=90 độ

góc KAI+góc KHI=180 độ

=>KAIH nội tiếp

góc CHB=góc CAB=90 độ

=>CAHB nội tiếp

b: Xét ΔCIB có

CH,BA là đường cao

CH cắt BA tại K

=>K là trực tâm

=>IK vuông góc BC

c: Xét ΔIHC vuông tại H và ΔIAB vuông tại A có

góc I chung

=>ΔIHC đồng dạng với ΔIAB

=>IH/IA=IC/IB

=>IH*IB=IA*IC

19 tháng 11 2019

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ A ∈ đường tròn đường kính BC.

D ∈ đường tròn đường kính MC

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ D ∈ đường tròn đường kính BC

⇒ A, B, C, D cùng thuộc đường tròn đường kính BC

hay tứ giác ABCD nội tiếp.

b) Xét đường tròn đường kính BC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) + Trong đường tròn đường kính MC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp cùng chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Trong đường tròn đường kính BC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0