Tìm các số nguyên dương x, y thỏa mãn
y-2x+3xy=24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 12p ⋮ 3 nên x²-3xy+p²y² ⋮ 3 mà -3xy ⋮ 3 nên x²+p²y² ⋮ 3 kết hợp với tính chất 1 số chính phương chỉ chia 3 dư 0 hoặc 1 nên nếu tổng 2 chính phương ⋮ 3 thì cả 2 số⋮ 3. Từ đó x² và p²y² mà đây là 2 bình phương và 3 là số nguyên tố nên x² và p²y² ⋮ 9. Vì x2⋮ 9 nên x ⋮ 3 từ đó 3xy ⋮cho 9. Qua đó x²-3xy+p²y² ⋮ 9. Ta có 12p= 4.3p mà (4,9)=1 nên 3p ⋮ 9 từ đó p ⋮ 3 mà p là số nguyên tố nên p = 3.
=> x²-3xy+p²y² =12p <=> x²-3xy+9y² =36 áp dụng bất đẳng thức Cô si x2+y2 ≥ 2xy với mọi x,y => x²+9y²≥2.x.3y=6xy => 36≥6xy-3xy=3xy =>12≥xy mà x,y là số nguyên dương nên x.y ≥1 nên 12≥xy≥x.1=x
Ta có x²+(-3xy)+9y² chẵn mà đây là tổng 3 số nguyên nên tồn tại 1 số chẵn
nếu x chẵn => x²+(-3xy) chẵn => 9y² chẵn mà (9,2)=1 nên y chẵn ta cmtt với y. Từ đó suy ra cả x và y đều chẵn, kết hợp với 12≥x,x⋮3 và x nguyên dương => x∈{6,12} thay x vào x²-3xy+9y² =36 ta tìm được các cặp (x,y) là (6,0);(6,2);(12,6)
Vậy các cặp (x,y,p) cần tìm là (6,0,3);(6,2,3);(12,6,3)
3xy + x + 15y - 44 = 0
<=> x(3y + 1) = 44 - 15y
<=> x = \(\frac{44-15y}{3y+1}=\:-5+\frac{49}{3y+1}\)
Để x nguyên dương thì trước tiên 3y + 1 phải là ước nguyên dương của 49 hay
(3y + 1) = (1; 7; 49)
<=> y = (0; 2; 16)
Chỉ có y = 2, x = 2 là thỏa đề bài
\(3xy+x+15y-44=0\)
\(\Leftrightarrow\) \(3xy+x+15y=44\)
\(\Leftrightarrow\) \(3xy+x+15y+5=49\)
\(\Leftrightarrow\) \(x\left(3y+1\right)+5\left(3y+1\right)=49\)
\(\Leftrightarrow\) \(\left(x+5\right)\left(3y+1\right)=49\)
Vì \(x,y\) nguyên dương nên \(x+5;\) \(3y+1\) nguyên dương và lớn hơn \(1\). Do đó,
\(^{x+5=7}_{3y+1=7}\) \(\Leftrightarrow\) \(^{x=2}_{y=2}\)
Vậy, phương trình có nghiệm nguyên là \(x=y=2\) (thỏa mãn \(x,y\in Z\) )
3xy+x+15y-44=0
=> (3xy+15y)+(x+5)-49=0
=> 3y.(x+5)+(x+5)=49
=> (x+5)(3y+1)=49
Do x,y là số nguyên dương nên x+5 và 3y+1 là ước dương của 49
Ta có bảng sau:
x+5 | 1 | 7 | 49 |
x | -4 | 2 | 44 |
3y+1 | 49 | 7 | 1 |
y | 16 | 2 | 0 |
Mà x, y là số nguyên dương nên (x;y) cần tìm là (2;2)
y-2x+3xy=24
3xy+y-2x=24
y(3x+1)-2x=24
y(3x+1)-2x-24=0
y(3x+1)-2x-2/3-70/3=0
y(3x+1)-2(x+1/3)-70/3=0
3y(x+1/3)-2(x+1/3)-70/3=0
(x+1/3)(3y-2)=70/3
3(x+1/3)(3y-2)=70
(3x+1)(3y-2)=70
Tự làm nhé^^