tính x^3+y^3+(x^2+y^2)z-xyz khi x+y+z =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (1/x+1/y+1/z)^2=1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/xz
=P+2/xy+2/yz+2/xz=P+(2z+2x+2y)/xyz=P+2(x+y+z)/x+y+z=P+2
mà (1/x+1/y+1/z)^2=3
=>p=3-2=1
Bài này cực kì chặt nên có lẽ phải sử dụng tới BĐT Schur
Đặt \(x+y+z=p\) ; \(xy+yz+zx=q\)
BĐT cần chứng minh tương đương: \(p^3+4q+6\ge2p^2+3pq\) với \(p;q\ge3\)
TH1: \(p\ge q\)
\(p^3+4q+6-2p^2-3pq\ge0\)
\(\Leftrightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge0\)
Do \(\left\{{}\begin{matrix}p\ge q\\p>2\end{matrix}\right.\) \(\Rightarrow\left(p^2-3q\right)\left(p-2\right)\ge\left(p^2-3p\right)\left(p-2\right)\)
\(\Rightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge\left(p^2-3p\right)\left(p-2\right)-2\left(p-3\right)\)
\(=\left(p-3\right)\left(p^2-2p-2\right)=\left(p-3\right)\left[p\left(p-3\right)+p-2\right]\ge0\)
TH2: \(p\le q\)
Áp dụng BĐT Schur bậc 4:
\(p^4+4q^2+6p\ge5p^2q\Rightarrow p^3+6\ge5pq-\dfrac{4q^2}{P}\)
Do đó ta chỉ cần chứng minh:
\(5pq-\dfrac{4q^2}{p}+4q\ge2p^2+3pq\)
\(\Leftrightarrow p^2q-2q^2+2pq-p^3\ge0\)
\(\Leftrightarrow\left(q-p\right)\left(p^2-2q\right)\ge0\) (đúng)
A = \(\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right)\left(x+y+z\right)=\left(x^2-xy+y^2\right).0=0\)Kuroba Kaito = Kaito Kid :D
ta có: A=(x^3+y^3)+z(x^2-xy+y^2)=(x+y)(x^2-xy+y^2)+z(x^2-xy+y^2)=(x+y+z)(x^2-xy+y^2)
mà x+y+z=0=> A=0
K CHO MÌNH NHA. MÌNH LỚP 9 NHÉ CÓ GÌ CỨ HỎI