Cho a,b,c thoả a^2+b^2+c^2=1. CMR abc+2(1+a+b+c+ab+bc+ca) >/ 0
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Ta có: \(a^2,b^2,c^2\le1\Leftrightarrow-1\le a,b,c\le1\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge0\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge0\left(1\right)\)
Ta lại có: \(\frac{\left(a+b+c+1\right)^2}{2}\ge0\)
\(\Leftrightarrow\frac{a^2+b^2+c^2+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow\frac{1+1+2\left(ab+bc+ca+a+b+c\right)}{2}\ge0\)
\(\Leftrightarrow ab+bc+ca+a+b+c+1\ge0\left(2\right)\)
Lấy (1) + (2) vế theo vế ta được
\(abc+2\left(ab+bc+ca+a+b+c+1\right)\ge0\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=b=0\\c=-1\end{cases}}\) và các hoán vị của nó
2(1+a+b+c+ab+bc+ac)
=2(a^2+b^2+c^2+ab+bc+ac)
=(a^2+b^2+c^2+2ab+2bc+2ac)+2(a+b+c) +1
=(a+b+c)^2+2(a+b+c)+1
=(a+b+c+1)^2 >= 0
đúng thì cho 1 tíck nhé