K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

\(x\in\left\{1;2;3;4;5;6;...\right\}\)

Đúng 100%

Good Luck

^.^

30 tháng 3 2017

\(x\left(x+1\right)>0\)

Suy ra x và x+1 cùng dấu 

*)Xét \(\hept{\begin{cases}x>0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x>0\\x>-1\end{cases}\left(1\right)}\)

*)Xét \(\hept{\begin{cases}x< 0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 0\\x< -1\end{cases}}\left(2\right)\)

Từ (1) và (2) suy ra \(\hept{\begin{cases}x>0\\x< -1\end{cases}}\)

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

26 tháng 2 2021

a,Áp dụng BĐT `|A|-|B|<=|A-B|`

`=>|x+1|-|x-2|<=|x+1-x+2|=3`

Mà đề bài `|x+1|-|x-2|>=3`

`=>|x+1|-|x-2|=3`

`=>x=2\or\x=-1`

`b,1/(|x|-3)-1/2<0`

`<=>(5-|x|)/(2|x|-6)<0`

`<=>(|x|-5)/(|x|-3)>0`

`<=>` $\left[ \begin{array}{l}|x|>5\\|x|<3\end{array} \right.$

`<=>` $\left[ \begin{array}{l}\left[ \begin{array}{l}x>5\\x<-5\end{array} \right.\\-3<x<3\end{array} \right.$

26 tháng 2 2021

`-2<=x<=1` nhé câu a ý mình ghi thiếu.

24 tháng 2 2021

Vì $3x^2-x+1>0,x^2+1>0$

$\to \begin{cases}x^2 \geq 4\x<-1\\\end{cases}$

$\to \begin{cases}\left[ \begin{array}{l}x \geq 2\\x \leq -2\end{array} \right.\\x<-1\\\end{cases}$

$\to x \leq -2$

Vậy tập xác định của phương trình là `(-oo,-2]`

24 tháng 2 2021

Ghi nhầm ;-;

[Lớp 8]Bài 1. Giải phương trình sau đây:a) \(7x+1=21;\)b) \(\left(4x-10\right)\left(24+5x\right)=0;\)c) \(\left|x-2\right|=2x-3;\)d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\) Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\) Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\) Bài 4. Giải bài toán bằng cách lập phương...
Đọc tiếp

undefined

[Lớp 8]

Bài 1. Giải phương trình sau đây:

a) \(7x+1=21;\)

b) \(\left(4x-10\right)\left(24+5x\right)=0;\)

c) \(\left|x-2\right|=2x-3;\)

d) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}.\)

 

Bài 2. Giải bất phương trình sau đây và biểu diễn tập nghiệm trên trục số:

                                   \(\dfrac{x-1}{3}-\dfrac{3x+5}{2}\ge1-\dfrac{4x+5}{6}.\)

 

Bài 3. Tìm giá trị lớn nhất của \(A=-x^2+2x+9.\)

 

Bài 4. Giải bài toán bằng cách lập phương trình:

Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi thực hiện người đó giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. 

Tính quãng đường AB.

 

Bài 5. Cho tam giác ABC vuông tại A có AH là đường cao. Vẽ HD⊥ AB (D ∈ AB), HE ⊥ AC (E∈ AC). AB=12cm, AC=16cm.

a) Chứng minh: ΔHAC đồng dạng với ΔABC;

b) Chứng minh AH2=AD.AB;

c) Chứng minh AD.AB=AE.AC;

d) Tính \(\dfrac{S_{ADE}}{S_{ABC}}.\)

9
26 tháng 3 2021

Bài 4 :

24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ

Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0 

Suy ra quãng đường AB là 36x(km)

Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)

Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)

Ta có phương trình: 

\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)

Vậy quãng đường AB dài 36.2 = 72(km)

 

6 tháng 4 2017

Để \(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\Leftrightarrow\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4x>1\\-x>-4\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}\Rightarrow}\frac{1}{4}< x< 4}\)

Vậy \(\frac{1}{4}< x< 4\)

4 tháng 5 2018

Nhân vế theo vế rồi giải như phương trình, khác mỗi dấu bđt

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \({2^x} > 16 \Leftrightarrow {2^x} > {2^4} \Leftrightarrow x > 4\) (do \(2 > 1\)) .

b) \(0,{1^x} \le 0,001 \Leftrightarrow 0,{1^x} \le 0,{1^3} \Leftrightarrow x \ge 3\) (do \(0 < 0,1 < 1\)).

c) \({\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{{25}}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {{{\left( {\frac{1}{5}} \right)}^2}} \right)^x} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{x - 2}} \ge {\left( {\frac{1}{5}} \right)^{2x}} \Leftrightarrow x - 2 \le 2{\rm{x}}\) (do \(0 < \frac{1}{5} < 1\))

\( \Leftrightarrow x \ge  - 2\).

5 tháng 6 2017

Vì x2 + 12 > 0 với mọi x

=> (4x-1)(x2+12)(-x+4) > 0

Khi ( (4x-1)(-x+4) > 0

TH1 : \(\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)

  <=> \(\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}}\)

=> 1/4 < x < 4

TH2  \(\hept{\begin{cases}4x-1< 0\\-x+4< 0\end{cases}}\)

<=>  \(\hept{\begin{cases}x< \frac{1}{4}\\x>4\end{cases}}\)

Vì không tồn tai x lớn hơn 4 và nhỏ hơn 1/4

=> TH2  không tồn tại x

=> (4x-1)(x2+12)(-x+4) > 0

 khi 1/4 < x < 4

5 tháng 6 2017

Vì x^2 + 12 > 0 với mọi x

Ta có bất phương trình tương đương: (4x-1)(-x+4) > 0

=> 4x-1 và -x+4 phải cùng dấu.

Trường hợp 1: 4x-1 > 0 và -x + 4 > 0 <=> x>1/4 và x<4 <=> 1/4 < x < 4.

Trường hợp 2: 4x-1 < 0 và -x + 4 < 0 <=> x<1/4 và x>4 (vô lý)

Vậy S={x | 1/4 < x < 4}

24 tháng 4 2019

\(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)

\(\Leftrightarrow\hept{\begin{cases}4x-1>0\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\\x^2+12>0\Leftrightarrow x^2>-12\Leftrightarrow x>12\\-x+4>0\Leftrightarrow-x>-4\Leftrightarrow x< 4\end{cases}}\)

12 tháng 1 2021

a, \(\dfrac{\left(2x-5\right)\left(x+2\right)}{4x-3}< 0\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)< 0\\4x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\left(2x-5\right)\left(x+2\right)>0\\4x-3< 0\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-2< x< \dfrac{5}{2}\\x>\dfrac{3}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>\dfrac{5}{2}\end{matrix}\right.\\x< \dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\dfrac{3}{4}< x< \dfrac{5}{2}\\x< -2\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là

S = \(\left(\dfrac{3}{4};\dfrac{5}{2}\right)\cup\left(-\infty;-2\right)\)

b, Pt

⇔ \(\left\{{}\begin{matrix}x^2-5x+6=x^2+6x+5\\x\in R\backslash\left\{-1;2\right\}\end{matrix}\right.\)

⇔ x = \(\dfrac{1}{11}\)

Vậy S = \(\left\{\dfrac{1}{11}\right\}\)