\(\dfrac{-3}{5}.\left(4x-12\right)=\dfrac{-5}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(4x-2\left(1-x\right)=5\left(x-4\right)\)
\(\Leftrightarrow4x-2+2x=5x-20\)
\(\Leftrightarrow x=-18\)
b: Ta có: \(\dfrac{x}{6}+\dfrac{1-3x}{9}=\dfrac{-x+1}{12}\)
\(\Leftrightarrow6x+4\left(1-3x\right)=3\left(-x+1\right)\)
\(\Leftrightarrow6x+4-12x=-3x+3\)
\(\Leftrightarrow-3x=-1\)
hay \(x=\dfrac{1}{3}\)
c: Ta có: \(\left(x+2\right)^2-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
1, bạn xem lại đề
2, 15(x-3) + 8x-21 = 12(x+1) +120
<=> 23x - 66 = 12x + 132
<=> 11x = 198 <=> x = 198/11
3, 10(3x+1) + 5 - 100 = 8(3x-1) - 6x - 4
<=> 30x + 10 - 95 = 18x -12
<=> 12x = 73 <=> x = 73/12
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
a/ \(\dfrac{5}{6}-\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{-5}{12}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{5}{6}-\dfrac{-5}{12}\)
\(\Leftrightarrow\dfrac{1}{2}x-\dfrac{1}{5}=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{2}x=\dfrac{29}{20}\)
\(\Leftrightarrow x=\dfrac{29}{10}\)
Vậy ...
b/ \(\left(4x-3\right)\left(\dfrac{5}{4}x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\\\dfrac{5}{4}x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=3\\\dfrac{5}{4}x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{8}{5}\end{matrix}\right.\)
Vậy .....
c/ \(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|-\dfrac{3}{4}=1,5\)
\(\Leftrightarrow\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{9}{4}\\\dfrac{7}{8}x-\dfrac{2}{3}=-\dfrac{9}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{7}{8}x=\dfrac{35}{12}\\\dfrac{7}{8}x=-\dfrac{19}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=-\dfrac{38}{21}\end{matrix}\right.\)
Vậy ......
d/ \(\left(\dfrac{3}{5}x-\dfrac{1}{2}\right)^3=\dfrac{8}{125}\)
\(\Leftrightarrow\left(\dfrac{3}{5}x-\dfrac{1}{2}\right)^3=\left(\dfrac{2}{5}\right)^3\)
\(\Leftrightarrow\dfrac{3}{5}x-\dfrac{1}{2}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{3}{5}x=\dfrac{9}{10}\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy ...
a. \(\dfrac{5}{6}-\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{-5}{12}\)
\(\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{5}{6}-\dfrac{-5}{12}\)
\(\left(\dfrac{3}{6}x-\dfrac{1}{5}\right)=\dfrac{5}{4}\)
\(\dfrac{3}{6}x=\dfrac{5}{4}+\dfrac{1}{5}\)
\(\dfrac{3}{6}x=\dfrac{29}{20}\)
\(x=\dfrac{29}{20}:\dfrac{3}{6}\)
\(x=\dfrac{29}{10}\)
Vậy...
b. \(\left(4x-3\right).\left(\dfrac{5}{4}x+2\right)=0\)
\(\left[{}\begin{matrix}4x-3=0\\\dfrac{5}{4}x+2=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4x=3\\\dfrac{5}{4}x=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{-8}{5}\end{matrix}\right.\)
Vậy ...
c. \(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|-\dfrac{3}{4}=1,5\)
\(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=1,5+\dfrac{3}{4}\)
\(\left|\dfrac{7}{8}x-\dfrac{2}{3}\right|=\dfrac{9}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{9}{4}\\\dfrac{7}{8}x-\dfrac{2}{3}=\dfrac{-9}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{7}{8}x=\dfrac{35}{12}\\\dfrac{7}{8}x=\dfrac{-19}{12}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=\dfrac{-38}{21}\end{matrix}\right.\)
Vậy...
\(a,\left(x-2\right)\left(x-3\right)-3\left(4x-2\right)=\left(x-4\right)^2\\ \Leftrightarrow x^2-5x+6-12x+6=x^2-8x+16\\ \Leftrightarrow-9x-4=0\\ \Leftrightarrow x=-\dfrac{4}{9}\)
\(b,\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\\ \Leftrightarrow6x^2+3-14x+4=6x^2-6-4x+12\\ \Leftrightarrow10x=1\\ \Leftrightarrow x=\dfrac{1}{10}\)
\(c,x-\dfrac{2x-2}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\\ \Leftrightarrow30x-12x+12+5x+40=210+10x-10\\ \Leftrightarrow13x=148\\ \Leftrightarrow x=\dfrac{148}{13}\)
\(d,\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5-x-2\right)\left(2x+5+x+2\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{7}{3}\end{matrix}\right.\)
\(e,x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
\(g,2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
\(h,\left(x+\dfrac{1}{x}\right)^2+2\left(x+\dfrac{1}{x}\right)-8=0\left(x\ne0\right)\)
Đặt \(x+\dfrac{1}{x}=t\), pt trở thành:
\(t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1-2x=0\\x^2+1+4x=0\left(1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\Delta\left(1\right)=16-4=12>0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)
Tick plzz
a) Ta có: \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(\dfrac{3x-16x-20}{12}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\cdot\left(-13x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\-13x-20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\-13x=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\dfrac{-20}{13}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;-4;\dfrac{-20}{13}\right\}\)
b) Ta có: \(\left(4x-1\right)\left(x+5\right)=x^2-25\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(4x-1-x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;\dfrac{-4}{3}\right\}\)
c) Ta có: \(x\left(x+3\right)^3-\dfrac{x}{4}\cdot\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot\left[x\left(x+3\right)^2-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x^2+6x+9\right)-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\dfrac{1}{4}x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot x\cdot\left(x^2+6x+\dfrac{35}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x^2+6x+9-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left[\left(x+3\right)^2-\dfrac{1}{4}\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+3-\dfrac{1}{2}\right)\left(x+3+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+\dfrac{5}{2}\right)\left(x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+\dfrac{5}{2}=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3;-\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
a: \(A=\dfrac{7}{12}+\dfrac{5}{72}-\dfrac{11}{36}=\dfrac{42}{72}+\dfrac{5}{72}-\dfrac{22}{72}=\dfrac{25}{72}\)
b: \(B=\dfrac{8+5}{10}:\dfrac{-5}{13}=\dfrac{13}{10}\cdot\dfrac{13}{-5}=-\dfrac{169}{100}\)
c: \(C=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}+\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{88-33+60}{55+132-84}=\dfrac{115}{103}\)
`!`
`-3/5 .(4x-12)=-5/3`
`=>4x-12=-5/3 : (-3/5)`
`=>4x-12=-5/3 xx (-5/3)`
`=>4x-12= 25/9`
`=>4x=25/9 +12`
`=>4x=133/9`
`=>x=133/9 : 4`
`=>x=133/9 xx 1/4`
`=>x=133/36`