Cho hình vuông ABCD có độ dài cạnh bằng a, M là một điểm thay đổi trên cạnh BC (M khác B) và N là điểm thay đổi trên cạnh CD (N khác C) sao cho MAN = 450 . Đường chéo BD cắt AM và AN lần lượt tại P và Q. a) Chứng minh tứ giác ABMQ là tứ giác nội tiếp. b) Gọi H là giao điểm của MQ và NP. Chứng minh AH vuông góc với MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\widehat{MAN}=\widehat{DBC}=45^0\Rightarrow AQMB\) nội tiếp. \(\left(1\right)\)
b, Từ \(\left(1\right)\Rightarrow\widehat{MQA}+\widehat{MBA}=180^0\Rightarrow\widehat{AQM}=90^0\left(\widehat{ABC}=90^0\right)\)
\(\Rightarrow MQ\perp AN\)
Tương tự như trên ta có: \(NP\perp AM\Rightarrow H\) là trực tâm của \(\Delta AMN\)
\(\Rightarrow AH\perp MN\left(đpcm\right)\)
c, Gọi \(AH\)\(∩\) \(MN=E\)
Gọi \(AF\perp AM,F\in CD\Rightarrow\widehat{FAD}=\widehat{BAM}\left(+\widehat{MAD}=90^0\right)\)
Lại có: \(\widehat{ADF}=\widehat{ABM}=90^0,AD=AB\Rightarrow\Delta ADF=\Delta ABM\left(g-c-g\right)\)
\(\Rightarrow AF=AM\)
Lại có: \(\widehat{NAF}=\widehat{MAN}=45^0\Rightarrow\Delta FAN=\Delta MAN\left(c-g-c\right)\)
\(\Rightarrow MN=FN\Rightarrow MN+NC+CM=NF+NC+CM=DN+CN+DF+CM\)
\(=\left(DN+CN\right)+\left(BM+CM\right)=CD+CB=2AD\)
Lại có tiếp: \(\hept{\begin{cases}AE\perp MN\\AD\perp NF\end{cases}}\Rightarrow AE=AD\)
\(\Rightarrow S_{ANM}=\frac{1}{2}.AE.MN=\frac{1}{2}.AD.MN\)
Lại có tiếp: \(MN\le MC+NC\)
\(\Rightarrow2MN\le MN+MC+NC=2AD\)
\(\Rightarrow MN\le AD\)
\(\Rightarrow S_{ANM}=\frac{1}{2}.AD.MN\le\frac{1}{2}AD^2\)
Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}M\equiv B\\M\equiv C\end{cases}}\)
(Rối thực sự -.- )
e, Gọi H là giao của MF , ME . Chú Minh MH.MF + NH.NF = CC^2 + CM^2
a) △APQ và △BMQ có: \(\widehat{PAQ}=\widehat{MBQ}=45^0\); \(\widehat{AQP}=\widehat{BQM}\).
\(\Rightarrow\)△APQ∼△BMQ (g-g).
\(\Rightarrow\dfrac{QP}{QA}=\dfrac{QM}{QB}\Rightarrow\dfrac{QP}{QM}=\dfrac{QA}{QB}\).
△ABQ và △MPQ có: \(\dfrac{QP}{QM}=\dfrac{QA}{QB};\widehat{AQB}=\widehat{MQP}\)
\(\Rightarrow\)△ABQ∼△MPQ (c-g-c).
b) △ABQ∼△MPQ \(\Rightarrow\widehat{BAQ}=\widehat{MPQ}\).
△APQ và △BPA có: \(\widehat{PAQ}=\widehat{PBA}=45^0;\widehat{APB}\) là góc chung.
\(\Rightarrow\)△APQ∼△BPA (g-g)\(\Rightarrow\widehat{BAP}=\widehat{AQP}\).
Mà \(\widehat{AQP}+\widehat{APQ}=180^0-\widehat{PAQ}=180^0-45^0=135^0\)
\(\Rightarrow\widehat{BAP}+\widehat{APQ}=135^0\)
\(\Rightarrow45^0+\widehat{BAQ}+\widehat{APQ}=135^0\)
\(\Rightarrow\widehat{MPQ}+\widehat{APQ}=\widehat{APM}=90^0\)
Hay MP⊥AN tại P.