\(\frac{5}{x}\)-\(\frac{y}{3}\)=\(\frac{1}{6}\)
chi tiết 2 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 1/x = 1/6 + y/3 = 1/6 + y.2/6 = 1+y.2/6
Để 1+ y.2 / 6 = 1/x thì 1 + y.2 = { 1 ; 2 ; 3 ; 6 }
1+y.2 = 1 => y = 0 <=> x = 6
1 + y.2 = 2 => không tồn tại y
1 + y.2 = 3 => y = 1 <=> x = 2
1 + y. 2 = 6 => không tồn tại y
b ) x/6 - 1/y = 1/2 = 3/6
=> x > 3
x = 4 thì y = 6
x = 5 thì y = 3
x = 6 thì y = 2
a) \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\Leftrightarrow\frac{1}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow x\left(1+2y\right)=6\)\(\Rightarrow x;\left(1+2y\right)\)là cặp ước của 6.
Bạn tự lập bảng và tìm giá trị của x và y.
b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{x}{6}-\frac{1}{2}=\frac{x-3}{6}\)
\(\Leftrightarrow y\left(x-3\right)=6\)\(\Rightarrow y;\left(x-3\right)\)là cặp ước của 6.
Ta có : \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{\frac{6}{5}+\frac{6}{7}-\frac{2}{3}+\frac{6}{11}}=\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{2\left(\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}\right)}=\frac{1}{2}\)
Lại có : \(\frac{\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right).2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=\frac{0.2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=0\)
Khi đó \(B=\frac{1}{2}+0=\frac{1}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}-\frac{1}{y}=5+1=6\)
\(\Leftrightarrow\frac{2}{x}=6\Rightarrow x=\frac{2}{6}=\frac{1}{3}\)
\(\frac{1}{x}+\frac{1}{y}-\left(\frac{1}{x}-\frac{1}{y}\right)=5-1=4\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{x}+\frac{1}{y}=4\)
\(\Leftrightarrow\frac{2}{y}=4\Rightarrow y=\frac{2}{4}=\frac{1}{2}\)
\(\Rightarrow x+y=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
Nhân vô rồi chuyển dấu lên và nhóm nhân -1ra ngoài rồi trg ngoặc là dãy có quy luật giải dãy đó r nhân phá ngoặc
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
\(\frac{5}{2}-\frac{7}{3}=\frac{1}{6}nhe\)
\(x=2\)
\(y=7\)