K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 12 2017
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
\(P=\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{x^3y^3+y^3z^3+x^3z^3}{x^2y^2z^2}\)
Áp dụng nếu a+b+c=0 thì a3+b3+c3=3abc
Với a=xy, b=yz, c=zx
Ta có: \(P=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)
Vậy P=3
10 tháng 7 2016
\(A=\frac{x+y}{z}+1+\frac{x+z}{y}+1+\frac{y+z}{x}+1-3\)
\(A=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-3\)
\(A=\left(x+y+z\right)\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=\left(z+y+z\right)\cdot0-3=-3\)
Vậy, A = -3
27 tháng 1 2017
Ta có : x + 2y + z + 2x + y + 2x = 5 + 9 + 10
<=> 3x + 3y + 3z = 24
<=> 3(x + y + z) = 24
=> x + y + z = 24 : 3 = 7
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}-\frac{1}{y}=5+1=6\)
\(\Leftrightarrow\frac{2}{x}=6\Rightarrow x=\frac{2}{6}=\frac{1}{3}\)
\(\frac{1}{x}+\frac{1}{y}-\left(\frac{1}{x}-\frac{1}{y}\right)=5-1=4\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{x}+\frac{1}{y}=4\)
\(\Leftrightarrow\frac{2}{y}=4\Rightarrow y=\frac{2}{4}=\frac{1}{2}\)
\(\Rightarrow x+y=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
lớp 8 có vẻ dễ nhỉ