Cho 2 đa thức:\(P\left(x\right)=x^5-x^4\)và\(Q\left(x\right)=x^4-x^3.\)
Tìm đa thức R(x) sao cho P(x)+Q(x)+R(x) là đa thức không.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : \(P\left(x\right)+Q\left(x\right)+R\left(x\right)=0\)
\(\Leftrightarrow x^5-x^4+x^4-x^3+R\left(x\right)=0\)
\(\Leftrightarrow x^5-x^3=R\left(x\right)\)
Từ những Đk trên suy ra : \(P\left(x\right)+Q\left(x\right)+R\left(x\right)=x^5-x^4+x^4-x^3+x^5-x^3=0\)
\(\Leftrightarrow2x^5-2x^3=0\)
Vậy P(x) + Q(x) + R(x) là đa thức.
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
Ta có: P(x) = x4 - 3x2 + 1212 – x.
a) Vì P(x) + Q(x) = x5 – 2x2 + 1 nên
Q(x) = x5 – 2x2 + 1 - P(x)
Q(x) = x5 – 2x2 + 1 - x4 + 3x2 - 1212 + x
Q(x) = x5 - x4 + x2 + x + 1212
b) Vì P(x) - R(x) = x3 nên
R(x) = x4 - 3x2 + 1212 – x - x3
hay R(x) = x4 - x3 - 3x2 – x + 1212.
Rút gọn:
\(P\left(x\right)=2x^2+4x\)
\(Q\left(x\right)=-x^3+2x^2-x+2\)
Để \(R\left(x\right)-P\left(x\right)-Q\left(x\right)=0\)
<=> \(R\left(x\right)=P\left(x\right)+Q\left(x\right)\)
= \(\left(2x^2+4x\right)+\left(-x^3+2x^2-x+2\right)\)
= \(-x^3+4x^2+3x+2\)
KL: \(R\left(x\right)=-x^3+4x^2+3x+2\)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
Theo đề bài ta có : \(P\left(x\right)+Q\left(x\right)+R\left(x\right)=0\)
\(\Rightarrow\left(x^5-x^4\right)+\left(x^4-x^3\right)+R\left(x\right)=0\)
\(\Leftrightarrow x^5-x^4+x^4-x^3+R\left(x\right)=0\)
\(\Leftrightarrow x^5-x^3+R\left(x\right)=0\)
\(\Rightarrow R\left(x\right)=x^3-x^5\)
Vậy đa thức \(R\left(x\right)=x^3-x^5\)