K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: \(\Leftrightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)

=>-6x+16=0

=>-6x=-16

=>x=8/3

b: \(\Leftrightarrow3\left(3-x\right)+2\left(5x-1\right)=4\)

=>9-3x+10x-2=4

=>7x+7=4

=>7x=-3

=>x=-3/7

c: \(\Leftrightarrow-3\left(4x+1\right)=2\left(4x-1\right)-6x-8\)

=>\(-12x-3=8x-2-6x-8=2x-10\)

=>-14x=-7

=>x=1/2

d: \(\Leftrightarrow\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

\(\Leftrightarrow2\left(5-x\right)+7\left(x-2\right)=4\left(x-1\right)+x\)

=>\(10-2x+7x-14=4x-4+x=5x-4\)

=>5x-4=5x-4(luôn đúng)

=>S=R\{0;2}

e: \(\Leftrightarrow x^3+1-x^3+1=\dfrac{3}{x}\)

=>\(2x=3\)

=>x=3/2

31 tháng 12 2023

Câu 9.

\(R_1ntR_2\Rightarrow I_1=I_2=I=2A\)

\(R_{tđ}=R_1+R_2=50+60=110\Omega\)

\(U_1=I_1\cdot R_1=2\cdot50=100V\)

\(U_2=I_2\cdot R_2=2\cdot60=120V\)

\(U=U_1+U_2=100+120=220V\)

Câu 10.

a)Khi các đèn sáng bình thường.

\(R_1=\dfrac{U_1^2}{P_1}=\dfrac{220^2}{75}=\dfrac{1936}{3}\Omega;I_{đm1}=\dfrac{P_1}{U_1}=\dfrac{75}{220}=\dfrac{15}{44}A\)

\(R_2=\dfrac{U_2^2}{P_2}=\dfrac{220^2}{100}=484\Omega;I_{đm2}=\dfrac{P_2}{U_2}=\dfrac{100}{220}=\dfrac{5}{11}A\)

Hai bóng đèn mắc song song nên dòng điện qua các bóng đèn là:

\(I_1=\dfrac{U}{R_1}=\dfrac{220}{\dfrac{1936}{3}}=\dfrac{15}{44}A\)

\(I_2=\dfrac{U}{R_2}=\dfrac{220}{484}=\dfrac{5}{11}A\)

b)Điện năng hai bóng đèn tiêu thụ trong một ngày là:

\(A_1=U_1I_1t+U_2I_2t=220\cdot\dfrac{15}{44}\cdot4\cdot3600+220\cdot\dfrac{5}{11}\cdot4\cdot3600=2520000J\)

\(\Rightarrow A_1=0,7kWh\)

Điện năng hai đèn tiêu thụ trong 30 ngày là:

\(A=30\cdot0,7=21kWh\)

Số đếm tương ứng của công tơ điện là 21 số điện.

14 tháng 11 2021

đề đâu ?

uses crt;

var a:array[1..100]of integer;

n,i,kt,j:integer;

begin

clrscr;

write('Nhap n='); readln(n);

for i:=1 to n do

begin

write('A[',i,']='); readln(a[i]);

end;

writeln('Cac so nguyen duong la: ');

for i:=1 to n do

if a[i]>0 then write(a[i]:4);

writeln;

writeln('Cac so nguyen to la: ');

for i:=1 to n do

if a[i]>1 then

begin

kt:=0;

for j:=2 to a[i]-1 do

if a[i] mod j=0 then kt:=1;

if kt=0 then write(a[i]:4);

end;

readln;

end.

18 tháng 7 2023

\(D=\dfrac{x^2}{x^2-1}+\dfrac{1}{x^2-x^4}=\dfrac{x^4}{x^2\left(x^2-1\right)}-\dfrac{1}{x^2\left(x^2-1\right)}=\dfrac{x^4-1}{x^2\left(x^2-1\right)}=\dfrac{\left(x^2-1\right)\left(x^2+1\right)}{x^2\left(x^2-1\right)}=\dfrac{x^2+1}{x^2}=1+\dfrac{1}{x^2}\)
do \(x\ne0,\pm1\Rightarrow\dfrac{1}{x^2}>0\Rightarrow1+\dfrac{1}{x^2}>1\Rightarrow D>1\left(đpcm\right)\)

18 tháng 7 2023

\(D=\dfrac{x^2}{x^2-1}+\dfrac{1}{x^2-x^4}\\ =\dfrac{x^4\left(1-x\right)}{\left(x-1\right)\left(x+1\right)\left(1-x\right)x^2}+\dfrac{x-1}{x^2\left(1-x\right)\left(1+x\right)\left(x-1\right)}\\ =\dfrac{x^4-x^5+x-1}{x^2\left(1-x\right)\left(1+x\right)\left(x-1\right)}\\ =\dfrac{-\left(x-1\right)^2\left(x^2+1\right)\left(x+1\right)}{-x^2\left(x-1\right)^2\left(x+1\right)}\\ =\dfrac{x^2+1}{x^2}>1\left(đpcm\right)\)

(x2 + 1 luôn lớn hơn x2)

25 tháng 8 2023

Bài 1. (a) Điều kiện: \(x\ne\pm1\).

Ta có: \(A=\left(\dfrac{x-2}{x-1}-\dfrac{x+3}{x+1}+\dfrac{3}{x-1}\right):\left(1-\dfrac{x+3}{x+1}\right)\)

\(=\left(\dfrac{x-2+3}{x-1}-\dfrac{x+3}{x+1}\right):\dfrac{x+1-\left(x+3\right)}{x+1}\)

\(=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right):\dfrac{x+1-x-3}{x+1}\)

\(=\dfrac{\left(x+1\right)^2-\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}:\dfrac{-2}{x+1}\)

\(=\dfrac{x^2+2x+1-x^2-2x+3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)

\(=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}=\dfrac{2}{1-x}\)

Vậy: \(A=\dfrac{2}{1-x}\)

 

(b) \(A=3\Leftrightarrow\dfrac{2}{1-x}=3\)

\(\Rightarrow1-x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{1}{3}\left(TM\right)\)

Vậy: \(x=\dfrac{1}{3}\)

 

Bài 2. (a) Phương trình tương đương với:

\(\dfrac{3\left(3x-2\right)}{12}+\dfrac{6\left(x+3\right)}{12}=\dfrac{4\left(x-1\right)}{12}+\dfrac{x+1}{12}\)

\(\Rightarrow3\left(3x-2\right)+6\left(x+3\right)=4\left(x-1\right)+x+1\)

\(\Leftrightarrow9x-6+6x+18=4x-4+x+1\)

\(\Leftrightarrow10x=-15\Leftrightarrow x=-\dfrac{3}{2}\)

Vậy: Phương trình có tập nghiệm \(S=\left\{-\dfrac{3}{2}\right\}\).

 

(b) Điều kiện: \(x\ne\pm1\). Phương trình tương đương với:

\(\dfrac{2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2x^2+2}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow2\left(x+1\right)+2\left(x-1\right)=2x^2+2\)

\(\Leftrightarrow2x+2+2x-2=2x^2+2\)

\(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2\left(x-1\right)^2=0\Rightarrow x-1=0\Leftrightarrow x=1\left(KTM\right)\)

Vậy: Phương trình có tập nghiệm \(S=\varnothing\)

2:

1: =7x(x-y)-5(x-y)

=(x-y)(7x-5)

2: =(x^2-y^2)-(4x-4y)

=(x-y)(x+y)-4(x-y)

=(x-y)(x+y-4)

3: =(x^2+2xy+y^2)-(2x+2y)+1

=(x+y)^2-2(x+y)+1

=(x+y-1)^2

3:

1: =>15x-9x+6=45-10x+25

=>6x+6=-10x+70

=>16x=64

=>x=4

2: =>x^2+4x-16-16=0

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

3: ĐKXĐ: x<>4; x<>-4

\(PT\Leftrightarrow\dfrac{x+4+\left(x+2\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\)

=>x+4+x^2-2x-8=5x-4

=>x^2-x-4=5x-4

=>x^2-6x=0

=>x(x-6)=0

=>x=0 hoặc x=6

4: \(\Leftrightarrow5\left(4x+1\right)-x+2>=3\left(2x-3\right)\)

=>20x+5-x+2>=6x-9

=>19x+7>=6x-9

=>13x>=-16

=>x>=-16/13

2 tháng 11 2023

Gì đấy bạn