S=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{11}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{3}{10}>\dfrac{3}{15}\)
\(\dfrac{3}{11}>\dfrac{3}{15}\)
\(\dfrac{3}{12}>\dfrac{3}{15}\)
\(\dfrac{3}{13}>\dfrac{3}{15}\)
\(\dfrac{3}{14}>\dfrac{3}{15}\)
Do đó: \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}=1\)
hay 1<S(1)
Ta có: \(\dfrac{3}{11}< \dfrac{3}{10}\)
\(\dfrac{3}{12}< \dfrac{3}{10}\)
\(\dfrac{3}{13}< \dfrac{3}{10}\)
\(\dfrac{3}{14}< \dfrac{3}{10}\)
Do đó: \(\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}=\dfrac{12}{10}\)
\(\Leftrightarrow S< \dfrac{15}{10}=\dfrac{3}{2}< 2\)(2)
Từ (1) và (2) suy ra 1<S<2(đpcm)
a) \(1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{6}{6}-\dfrac{3}{6}+\dfrac{2}{6}=\dfrac{6-3+2}{6}=\dfrac{1}{6}\)
\(b.\) \(\dfrac{2}{5}+\dfrac{3}{5}:\dfrac{9}{10}=\dfrac{2}{5}+\dfrac{3}{5}.\dfrac{10}{9}=\dfrac{2}{5}+\dfrac{2}{3}=\dfrac{6}{15}+\dfrac{10}{15}=\dfrac{6+10}{15}=\dfrac{16}{15}\)
\(c.\) \(\dfrac{7}{11}.\dfrac{3}{4}+\dfrac{7}{11}.\dfrac{1}{4}+\dfrac{4}{11}=\dfrac{21}{44}+\dfrac{7}{44}+\dfrac{4}{11}=\dfrac{21}{44}+\dfrac{7}{44}+\dfrac{16}{44}=\dfrac{21+7+16}{44}=\dfrac{44}{44}=1\)
a/\(1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{6}{6}-\dfrac{3}{6}+\dfrac{2}{6}=\dfrac{5}{6}\)
b/\(\dfrac{2}{5}+\dfrac{3}{5}:\dfrac{9}{10}=\dfrac{2}{5}+\dfrac{3}{5}.\dfrac{10}{9}=\dfrac{2}{5}+\dfrac{2}{3}=\dfrac{6}{15}+\dfrac{10}{15}=\dfrac{16}{15}\)
a) \(\dfrac{-5}{9}.\dfrac{3}{11}+\dfrac{-13}{18}.\dfrac{3}{11}\)
\(=\dfrac{3}{11}.\left(\dfrac{-5}{9}+\dfrac{-13}{9}\right)\)
\(=\dfrac{3}{11}.\left(-2\right)\)
\(=\dfrac{-6}{11}\)
b) \(\dfrac{11}{2}.2\dfrac{1}{3}-1\dfrac{1}{5}.1\dfrac{1}{2}\)
\(=\dfrac{11}{3}.\dfrac{7}{3}-\dfrac{6}{5}.\dfrac{3}{2}\)
\(=\dfrac{77}{9}-\dfrac{9}{5}\)
\(=\dfrac{385}{45}-\dfrac{81}{45}\)
\(=\dfrac{304}{45}\)
c) \(1\dfrac{1}{9}.\dfrac{2}{145}-4\dfrac{1}{3}-\dfrac{2}{145}+\dfrac{2}{145}\)
\(=\dfrac{10}{9}.\dfrac{2}{145}-\dfrac{8}{3}\)
\(=\dfrac{4}{261}-\dfrac{8}{3}\)
\(=\dfrac{4}{261}-\dfrac{696}{261}\)
\(=-\dfrac{692}{261}\)
d) \(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)
\(=\left(1-1\right)+\left(2-2\right)+\left(3-3\right)+4-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)-\left(\dfrac{2}{3}+\dfrac{1}{3}\right)-\left(\dfrac{3}{4}+\dfrac{1}{4}\right)\)
\(=0+0+0+4-1-1-1\)
\(=4-3\)
\(=1\)
\(A=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{64}\)
=1/64
\(\dfrac{2}{5}\times15\dfrac{1}{3}-\dfrac{2}{5}\times10\dfrac{1}{3}\)
\(=\dfrac{2}{5}\times\left(15\dfrac{1}{3}-10\dfrac{1}{3}\right)\)
\(=\dfrac{2}{5}\times5\)
\(=2\)
____________________
\(12\dfrac{5}{11}-\left(3\dfrac{1}{4}+2\dfrac{5}{11}\right)\)
\(=12\dfrac{5}{11}-3\dfrac{1}{4}-2\dfrac{5}{11}\)
\(=\left(12\dfrac{5}{11}-2\dfrac{5}{11}\right)-3\dfrac{1}{4}\)
\(=10-3\dfrac{1}{4}\)
\(=\dfrac{27}{4}\)
_______________
\(\dfrac{34}{31}-\dfrac{19}{28}-\dfrac{3}{31}\)
\(=\left(\dfrac{34}{31}-\dfrac{3}{31}\right)-\dfrac{19}{28}\)
\(=\dfrac{31}{31}-\dfrac{19}{28}\)
\(=1-\dfrac{19}{28}\)
\(=\dfrac{9}{28}\)
Em chú ý nhân 3 với S sẽ ra được 1 dãy gần giống với S
Trừ 3S với S để triệt tiêu phần giống là xong nhé.
Chúc em học tốt!