tim x nguyen de
\(A=\frac{x-3}{4x+6}\) la binh phuong cua mot phan so
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 4x3 + 14x2 + 9x - 6 = ( x + 2 ) ( 4x2 + 6x - 3 )
Chứng minh x+2 và 4x2 + 6x - 3 nguyên tố cùng nhau nên để 4x3 + 14x2 + 9x - 6 là số chính phương
thì x + 2 và 4x2 + 6x -3 là số chính phương
đặt x + 2 = a2 ; 4x2 + 6x -3 = b2
\(\Rightarrow x=a^2-2\)
Thay vào ta có : 4 ( a2 - 2 )2 + 6 ( a2 - 2 ) - 3 = b2 hay 4a4 - 10a2 + 1= b2
\(\Rightarrow16a^4-40a^2+4=4b^2\Rightarrow\left(4a^2-2b-5\right)\left(4a^2+2b-5\right)=21\)
Mà 0 < 4a2 - 2b - 5 < 4a2 + 2b - 5
..... tìm được x = 2
a) Số dư của p2 cho 3 là 1
b) Khi p là số lẻ thì p2 + 2015 là hợp số
Khi p là số chẵn thì p2 + 2015 là số nguyên tố
a, \(A=\frac{n-1}{n+4}\) là phân số
\(\Leftrightarrow n+4\ne0\)
\(\Rightarrow n\ne-4\)
b, \(A=\frac{n-1}{n+4}\inℤ\Leftrightarrow n-1⋮n+4\)
\(\Rightarrow n+4-5⋮n+4\)
\(n+4⋮n+4\)
\(\Rightarrow5⋮n+4\)
\(n\inℤ\Rightarrow n+4\inℤ\)
\(\Rightarrow n+4\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-9;1\right\}\)
\(a)\) Để A là phân số thì \(n+4\ne0\)\(\Rightarrow\)\(n\ne-4\)
\(b)\) Ta có :
\(A=\frac{n-1}{n+4}=\frac{n+4-5}{n+4}=\frac{n+4}{n+4}-\frac{5}{n+4}=1-\frac{5}{n+4}\)
Để \(A\inℤ\) thì \(\frac{5}{n+4}\inℤ\)\(\Rightarrow\)\(5⋮\left(n+4\right)\)\(\Rightarrow\)\(\left(n+4\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(n+4\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(-3\) | \(-5\) | \(1\) | \(-9\) |
Vậy \(n\in\left\{-9;-5;-3;1\right\}\) thì \(A\inℤ\)
Chúc bạn học tốt ~
Phân thức xác định
\(\Leftrightarrow2x^2-2\ne0\)
\(\Leftrightarrow2\left(x^2-1\right)\ne0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
Vậy phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
Đặt \(A=\frac{4x-4}{2x^2-2}=\frac{4\left(x-1\right)}{2\left(x^2-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2}{x+1}\)
Thay x=-2 vào A ta có: \(A=\frac{2}{-2+1}=\frac{2}{-1}=-2\)
Vậy \(A=-2\)tại x=-2
Ta có: \(x\in Z\Rightarrow x+1\in Z\)
\(A\in Z\Leftrightarrow\left(x+1\right)\in\text{Ư}\left(2\right)=\left\{\pm1;\pm2\right\}\)
đến đây b tự làm nhé~