K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

 1/5^2 < 1/4.5 =1/4 -1/5 
1/6^2 < 1/5.6 = 1/5-1/6 
1/7^2 < 1/6.7 = 1/6-1/7 
... 
1/100^2 < 1/99.100 = 1/99 - 1/100 

Vậy 1/5^2+1/6^2+1/7^2+...+1/100^2 < 1/4 -1/5+1/5-1/6+...+ 1/98-1/99 +1/99 -1/100 
1/5^2+1/6^2+1/7^2+...+1/100^2 < 1/4 -1/100 
1/5^2+1/6^2+1/7^2+...+1/100^2 < 24/100 < 50/100 = 1/2 
Hay 1/5^2+1/6^2+1/7^2+...+1/100^2<1/2.

19 tháng 3 2017

rhzerj

21 tháng 10 2017

neu bot mot canh hinnh vuong di 7 m va bot mot canh khac di 25 m thi duoc mot hinh chu nhat co chieu dai gap 3 lan chieu rong tinh chu vi va dien h hinh vuong

13 tháng 8 2021

Ta có: \(\dfrac{1}{5^2}>\dfrac{1}{5.6};\dfrac{1}{6^2}>\dfrac{1}{6.7};...;\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{96}{505}>\dfrac{1}{6}\) (1)

Ta có: \(\dfrac{1}{5^2}< \dfrac{1}{4.5};\dfrac{1}{6^2}< \dfrac{1}{5.6};\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\) (2)

Từ (1) và (2)⇒\(\dfrac{1}{6}< B< \dfrac{1}{4}\)

 

 

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

28 tháng 4 2022

Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)

Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

=1−12+12−13+...+17−18=1−12+12−13+...+17−18

=1−18<1(2)=1−18<1(2)

Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1

18 tháng 7 2019

Ta có :

S= 1/51 +1/52 +..+1/100

Vì 1/51>1/52>...>1/100 

=> S >1/100 * 50 =1/2 (1)

Vì 1/100 <1/99<...<1/51<1/50

=> S < 1/50 * 50=1 (2)

Từ (1),(2) => 1/2 < S<1

P=1/2^2+1/2^3+...+1/2^2018 

2P=1/2 +1/2^2 +...+1/2^2017

=> 2P-P= (1/2 +1/2^2 +...+1/2^2017)-(1/2^2+1/2^3+...+1/2^2018 )

=> P=1/2 -1/2^2018 <1/2 <3/4

18 tháng 7 2019

Ta có: \(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}.50=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Ta có \(\frac{1}{51}< \frac{1}{50};\frac{1}{52}< \frac{1}{50};...;\frac{1}{100}< \frac{1}{50}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}.50=1\)

\(\Rightarrow S< 1\)

20 tháng 4 2018

Ta có :

\(S=\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+.......+\frac{1}{62}+\frac{1}{63}+\frac{1}{64}\)

\(\Rightarrow S< \frac{1}{17}+\frac{1}{17}+......+\frac{1}{17}+\frac{1}{17}+\frac{1}{17}\)

\(\Rightarrow S< \frac{1}{17}.48\)

\(\Rightarrow S< \frac{48}{17}\)

\(\Rightarrow S< 2\)( 1 ) 

Lại có :

\(S>\frac{1}{64}+\frac{1}{64}+.........+\frac{1}{64}+\frac{1}{64}+\frac{1}{64}\)

\(\Rightarrow S>\frac{1}{64}.48\)

\(\Rightarrow S>\frac{3}{4}\)( 2 ) 

Từ ( 1 ) và ( 2 ) suy ra : \(\frac{3}{4}< S< 2\)

Vậy \(1< S< 2\left(ĐPCM\right)\)

\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{5}+\frac{1}{13}.3+\frac{1}{61}.3\)

\(=\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

\(\Rightarrowđpcm\)

31 tháng 5 2015

Ta có:

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3

=>S<1/5+1/4+1/20=10/20

Hay S<1/2

15 tháng 8 2023

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

15 tháng 8 2023

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

15 tháng 8 2023

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)