tìm các số nguyên x,y thỏa mãn x>ý>1va 2x+2y+1chia hết cho xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
Tới đây đơn giản rồi tự làm tiếp nhé
2y2 x + x + y + 1 = x2 + 2y2 + xy
<=> (2y2 x - 2y2) + (x - x2) + (y - xy) = -1
<=> (x - 1)(2y2 - x - y) = - 1
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}}hoac\:\orbr{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}}\)
chúc bạn học tốt
Tới đây đơn giản rồi tự làm tiếp n
ta có x>=2y suy ra x-2y>=0
m=x^2/xy+y^2/xy điều kiện x,y khác 0
M=x/y+y/x
2M=2x/y+2y/x
2M=2.x/y+(-x+2y+x)/x
2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x
2m=2(x-2y)/y-(x-2y)/x+5
vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5
2M>=5
2M>5/2
vậy M=5/2
chưa chắc đã đúg đôu đúg tk mk nha
Đặt \(\frac{x}{y}=a\)
Vì \(x\ge2y>0\Rightarrow a\ge2\)
Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)
Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)