K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2023

Phương pháp phản chứng:

Giả sử n4 + 7.( 7 + 4n3) ⋮ 64 ∀ n \(\in\) { n=2k +1/k \(\in\) N}

theo giả sử ta có với n = 1 thì    14 + 7.( 7 + 4.13) ⋮ 64 

⇔ 1 + 7. 11 ⋮ 64   ⇔ 78 ⋮ 64 ⇔ 64+ 14 ⋮ 64 ⇔ 14 ⋮ 64 ( vô lý)

Vậy n4 + 7.( 7 + 4n3) ⋮ 64 ∀ n lẻ là không thể xảy ra.

 

3 tháng 2 2022

n4 + 7( 7 + 2n2 )

= n4 + 14n2 + 49

= ( n2 + 7 )2

Vì n lẻ và n ∈ Z => n = 2k + 1 ( k ∈ Z )

Thế vô ta được :

[ ( 2k + 1 )2 + 7 ]2

= ( 4k2 + 4k + 1 + 7 )2

= ( 4k2 + 4k + 8 )2

= [ 4( k2 + k + 2 ) ]2

= { 4[ k( k + 1 ) + 2 ] }2

Ta có : k( k + 1 ) chia hết cho 2

            2 chia hết cho 2

=> k( k + 1 ) + 2 chia hết cho 2

=> 4[ k( k + 1 ) + 2 ] chia hết cho 8

=>  { 4[ k( k + 1 ) + 2 ] }2 chia hết cho 64

=> đpcm

30 tháng 8 2023

Ngu

 

15 tháng 5 2021

phân tích n^2+4n+8=(n+1)(n+3)

vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)

=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)

=4.(k+1)(k+2)

(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2

=>4.(k+1)(k+2)\(⋮\)8

 

15 tháng 5 2021

bài kia làm tương tự

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

11 tháng 11 2016

em cam on thay a

11 tháng 10 2020

Ta có :

\(n^4+7\left(7+2n^2\right)\)

\(=n^4+49+14n^2\)

\(=\left(n^2+7\right)^2\)

Vì n là số nguyên lẻ nên n có dạng 2k + 1 với k là số nguyên 

 \(\Rightarrow\left(n^2+7\right)^2=\left[\left(2k+1\right)^2+7\right]^2\)

\(=\left[\left(4k^2+4k+1\right)+7\right]^2\)

\(=\left(4k^2+4k+8\right)^2\)

\(=\left[4k\left(k+1\right)+8\right]^2\)

Vì \(\hept{\begin{cases}k\left(k+1\right)⋮2\forall k\in Z\\4⋮4\end{cases}}\) nên \(4k\left(k+1\right)⋮8\forall k\in Z\)

\(\Rightarrow4k\left(k+1\right)+8⋮8\forall k\in Z\)

\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮8^2\forall k\in Z\)

\(\Rightarrow\left[4k\left(k+1\right)+8\right]⋮64\forall k\in Z\)

=> đpcm 

11 tháng 10 2020

n4 + 7( 7 + 2n2 )

= n4 + 14n2 + 49

= ( n2 + 7 )2

Vì n lẻ và n ∈ Z => n = 2k + 1 ( k ∈ Z )

Thế vô ta được :

[ ( 2k + 1 )2 + 7 ]2

= ( 4k2 + 4k + 1 + 7 )2

= ( 4k2 + 4k + 8 )2

= [ 4( k2 + k + 2 ) ]2

= { 4[ k( k + 1 ) + 2 ] }2

Ta có : k( k + 1 ) chia hết cho 2

            2 chia hết cho 2

=> k( k + 1 ) + 2 chia hết cho 2

=> 4[ k( k + 1 ) + 2 ] chia hết cho 8

=>  { 4[ k( k + 1 ) + 2 ] }2 chia hết cho 64

=> đpcm

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)