Cho (2a+15b):(5a-7b)=(2c+15d):(5c-7d).CM a:b=c:d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k
=>a=bk; c=dk
1: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2\cdot bk+15b}{5\cdot bk-7b}=\dfrac{2k+15}{5k-7}\)
\(\dfrac{2c+15d}{5c-7d}=\dfrac{2dk+15d}{5dk-7d}=\dfrac{2k+15}{5k-7}\)
Do đó: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)
2: \(\dfrac{a+2c}{b+2d}=\dfrac{bk+2dk}{b+2d}=k\)
\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
Do đó: \(\dfrac{a+2c}{b+2d}=\dfrac{a+c}{b+d}\)
hay (a+2c)(b+d)=(a+c)(b+2d)
a: \(\dfrac{2a+15b}{5a-7b}=\dfrac{2c+15d}{5c-7d}\)
\(\Leftrightarrow\left(2a+15b\right)\left(5c-7d\right)=\left(5a-7b\right)\left(2c+15d\right)\)
\(\Leftrightarrow10ac-14ad+75bc-105bd=10ac+75ad-14bc-105bd\)
\(\Leftrightarrow-14ad+75bc=-14bc+75ad\)
=>ad=bc
hay a/b=c/d
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)
\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{2\cdot d^2k^2-bk\cdot dk}{2\cdot d^2-bd}=k^2\)
Do đó; \(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)
Vì \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)
\(\Rightarrow\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}=\frac{2c}{2c}=\frac{15b}{15b}=\frac{5a}{5c}=\frac{7b}{7d}\)( áp dụng tc của dãy tỉ số = nhau )
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Thay a = bk; c = dk vào đẳng thức \(\frac{2a+15b}{5a-7b}=\frac{2a+15d}{5c-7d}\). Ta được:
+, \(\frac{2bk+15b}{5bk-7b}=\frac{b\left(2k+15\right)}{b\left(5k-7\right)}=\frac{2k+15}{5k-7}\)(1)
+, \(\frac{2dk+15d}{5dk-7d}=\frac{d\left(2k+15\right)}{d\left(5k-7\right)}=\frac{2k+15}{5k-7}\)(2)
Từ (1) và (2)
\(\Rightarrow\frac{2bk+15b}{5bk-7b}=\frac{2dk+15d}{5dk-7d}\)
Hay \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)<đpcm>
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Khi đó : \(\frac{2a+15b}{5a-7b}=\frac{2bk+15b}{5bk-7b}=\frac{b\left(2k+15\right)}{b\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(1\right)\)
\(\frac{2c+15d}{5c-7d}=\frac{2dk+15d}{5dk-7d}=\frac{d\left(2k+15\right)}{d\left(5k-7\right)}=\frac{2k+15}{5k-7}\left(2\right)\)
Từ (1) và (2)
=> \(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\left(\text{đpcm}\right)\)
1, Ta có:\(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)\(\Rightarrow\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}=\frac{2a+15b+5a-7b}{2c+15d+5c-7d}=\frac{7a-8b}{7c-8d}\)
\(\Rightarrow\frac{7a-8b}{7c-8d}=\frac{7a}{7c}=\frac{8b}{8d}\)\(\Rightarrow\frac{7a}{7c}=\frac{8b}{8d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)(đpcm)
2, Ta có: \(4^{30}=2^{30}.2^{30}=2^{30}.\left(2^2\right)^{15}=2^{30}.4^{15}\)
Lại có: \(3.24^{10}=3.3^{10}.8^{10}=3^{11}.\left(2^3\right)^{10}=3^{11}.2^{30}\)
Vì \(4^{15}>3^{11}\)\(\Rightarrow2^{30}.4^{15}>2^{30}.3^{11}\)\(\Rightarrow4^{30}>3.24^{10}\)\(\Rightarrow2^{30}+3^{30}+4^{30}>3.24^{10}\)
Sửa lại câu 1.
Với đk: \(5a\ne7b;5c\ne7d\); \(b;d\ne0\).
\(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)
TH1: \(2c+15d=0\)=> \(2a+15b=0\)=> \(\frac{a}{b}=\frac{c}{d}\)
TH2: \(2c+15d\ne0\)
=> \(\frac{2a+15b}{2c+15d}=\frac{5a-7b}{5c-7d}\)
=> \(\frac{5\left(2a+15b\right)}{5\left(2c+15d\right)}=\frac{2\left(5a-7b\right)}{2\left(5c-7d\right)}\)
=> \(\frac{10a+75b}{10c+75d}=\frac{10a-14b}{10c-14d}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{10a+75b}{10c+75d}=\frac{10a-14b}{10c-14d}=\frac{10a+75b-10a+14b}{10c+75d-10c+14d}=\frac{89b}{89d}=\frac{b}{d}\)
=> \(\frac{10a+75b}{10c+75d}=\frac{b}{d}=\frac{75b}{75d}=\frac{10a+75b-75b}{10c+75d-75d}=\frac{10a}{10c}=\frac{a}{c}\)
=> \(\frac{b}{d}=\frac{a}{c}\)
=> \(\frac{a}{b}=\frac{c}{d}\).
Ta có :
\(\frac{2a+15b}{5a-7b}=\frac{2c+15d}{5c-7d}\)
\(\Rightarrow\left(2a+15b\right)\left(5c-7d\right)=\left(2c+15d\right)\left(5a-7b\right)\)
\(\Rightarrow2a\left(5c-7d\right)+15b\left(5c-7d\right)=2c\left(5a-7b\right)+15d\left(5a-7b\right)\)
\(\Rightarrow10ac-14ad+75bc-105bd=10ac-14cb+75ad-105bd\)
\(\Rightarrow-14ad=-14cb\)
=> ad = cb
=> \(\frac{a}{b}=\frac{c}{d}\)
Giả sử a/b=c/d (vì a:b=c:d cũng là a/b=c/d)
Đặt a/b=c/d=k
=> a=bk ;c=dk
Thay a=bk vào vế trái ta đc:
2bk+15b/5bk-7b
=b^2 k(2+15)/b^2 k (5-7)
=-17/2 (1)
Thay c=dk vào vế phải ta đc:
2dk+15d/5dk-7d
=d^2 k(2+15)/d^2 k(5-7)
=-17/2 (2)
Từ (1) và (2) => (2a+15b)/(5a-7b)=(2c+15d)/(5c-7d) (vì cùng = -17/2)
Vậy giả sử trên là đúng.