K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

A đạt giá trị nguyên là 2 khi x=7 

k cho mình nha bạn 

15 tháng 4 2020

\(3-m=\frac{10}{x+2}\)

\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)

=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}

TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)

TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)

15 tháng 4 2020

bài 3:

\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)

\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)

Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên 

Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)

Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng

x-3-5-115
x-2248
18 tháng 11 2017

MK ko biế đúng ko nữa , sai thì ý kiến

a)

Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên,(x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1),(x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

b)

Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên,(x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1),(x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chúc các bn hok tốt

Tham khảo nhé

4 tháng 12 2018

Nguyên Dương Hay Nguyên Âm

4 tháng 12 2018

\(A=\frac{\left(x^4+4x^2+4\right)+\left(3x^3+6x\right)-\left(2x^2+4\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)^2+3x\left(x^2+2\right)-2\left(x^2+2\right)-2}{x^2+2}\)

\(A=\frac{\left(x^2+2\right)\left(x^2+3x\right)}{x^2+2}-\frac{2}{x^2+2}=x^2+3x-\frac{2}{x^2+2}\)

Để A là số nguyên, mà x là số nguyên nên \(x^2+3x\)nguyên, do đó \(\frac{2}{x^2+2}\inℤ\)

Do \(x^2+2\ge2\) nên \(x^2+2=2\Leftrightarrow x=0\)