Biết ab là hai số cuối của 72022. Tính a+b.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Ngọc Anh Dũng - Toán lớp 8 - Học toán với OnlineMath
Bạn tham khảo câu a ở link này nhé!
mk bít bài này:
a) gọi 3 số chẵn đó là: a, a + 2, a + 4
theo bài ra, ta có:
(a + 2) (a + 4) - [a . (a + 2)] = 192
=> a2 + 6a + 8 - (a2 + 2a) = 192
=> a2 + 6a + 8 - a2 - 2a = 192
=> 4a + 8 = 192
=> 4a = 184
=> a = 46
=> a + 2 = 46 + 2 = 48; a + 4 = 46 + 4 = 50
Vậy 3 số chẵn đó lần lượt là: 46, 48, 50
b)gọi 4 số tự nhiên liên tiếp đó là x,x+1,x+2,x+3
Theo bài ra ta có :x(x+1)+146=(x+2)(x+3)
<=>x^2+x+146=x^2+5x+6
<=>4x=140
<=>x=35
Vậy 4 số tự nhiên đó là 35,36,37,38
gọi diện tích hình vuông là \(\overline{aabb}=a\times1100+b\times11=11\times\overline{a0b}\)
vì diện tích hình vuông là số chính phương nên ta có
\(\overline{a0b}=11\times k^2\Rightarrow\overline{a0b}=704\)
hay diện tích hình vuông là 7744 và cạnh hình vuông khi đó là : 88
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Lời giải:
Ta có:
$7^4\equiv 1\pmod {100}$
$\Rightarrow 7^{2022}=(7^4)^{505}.7^2\equiv 1^{505}.7^2\equiv 49\pmod {100}$
Vậy $7^{2022}$ có tận cùng là $49$
$\Rightarrow \overline{ab}=49$
$\Rightarrow a+b=4+9=13$