cho a2 + b2 ≤ 1. Chứng minh rằng ( ac + bd - 1 )2 ≥ ( a2 + b2 - 1 )(c2 + d2 -1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\left(ac+bd\right)^2+\left(ad-bc\right)^2\\ =a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\\ =a^2c^2+b^2d^2+a^2d^2+b^2c^2\\ =\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\\ =a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\\ =\left(a^2+b^2\right)\left(c^2+d^2\right)\)
2, \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow a^2c^2+b^2c^2+a^2d^2+b^2d^2\ge a^2c^2+2abcd+b^2d^2\)
\(\Leftrightarrow b^2c^2-2abcd+a^2d^2\ge0\)
\(\Leftrightarrow\left(bc-ad\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow bc=ad\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
\(1\)/
⇔ \(\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
⇔\(a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
⇔\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ⇒ \(\left(dpcm\right)\)
\(2\)/
⇔\(\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\ge\left(ac\right)^2+2abcd+\left(bd\right)^2\)
⇔\(\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)
⇔\(\left(ad-bc\right)^2\ge0\left(đúng\right)\)
\(1.a,\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(b,\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ad-bc\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow-\left(ad-bc\right)^2\le0\left(luôn-đúng\right)\)
\(dấu"='\) \(xảy\) \(ra\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(c2:x+y=2\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow\left(x+y\right)^2+\left(x-y\right)^2\ge4\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2\ge4\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge4\Leftrightarrow x^2+y^2\ge2\)
\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=y=1\)
Câu 1:
a)Ta có (ac+bd)2+(ad-bc)2=(ac)2+2abcd+(bd)2+(ad)2-2abcd+(bc)2
=(ac)2+(bd)2+(ad)2+(bc)2
=a2(c2+d2)+b2(c2+d2)
=(a2+b2)(c2+d2) (đpcm)
b)Ta có (ac+bd)2 = (ac)2+2abcd+(bd)2
Lại có (a2+b2)(c2+d2) = (ac)2+(bd)2+(ad)2+(bc)2
Ta có (ac+bd)2 ≤ (a2+b2)(c2+d2)
<=>(a2+b2)(c2+d2) - (ac+bd)2 ≥ 0
<=>(ac)2+(bd)2+(ad)2+(bc)2-[(ac)2+2abcd+(bd)2]
<=>(ad)2 - 2abcd +(bc)2 ≥ 0
<=>(ad-bc)2 ≥ 0 (Luôn đúng) => đpcm
Câu 2:
Áp dụng BĐT Bunhiacôpxki, ta có (x+ y)2 ≤ (x2 + y2)(12 + 12) => 4 ≤ 2.S => 2 ≤ S
Dấu ''='' xảy ra <=> x=y=1
Vậy Min S=2 <=> x=y=1
Bài 1:
Biến đổi tương đương thôi:
\((ac+bd)^2+(ad-bc)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=(a^2+b^2)(c^2+d^2)\)
Ta có đpcm
Bài 2: Áp dụng kết quả bài 1:
\((a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2\geq (ac+bd)^2\) do \((ad-bc)^2\geq 0\)
Dấu bằng xảy ra khi \(ad=bc\Leftrightarrow \frac{a}{c}=\frac{b}{d}\)
a: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b: Bạn ghi lại đề đi bạn
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2-2abcd+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b: \(\left(ac+bd\right)^2< =\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2< =0\)
\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2< =0\)
\(\Leftrightarrow\left(ad-bc\right)^2>=0\)(luôn đúng)
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) \(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^{^2}\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2\)
\(=a^2d^2+b^2c^2-2abcd\)
\(=\left(ad\right)^2-2ad.bc+\left(bc\right)^2\)
\(=\left(ad-bc\right)^2\ge0\)
\(=\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(ac+bd=0\)
\(=\) \(abc^2+abd^2+cda^2+cdb^2\)
\(=\) \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)
\(=\) \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)
Nếu \(c^2+d^2\ge1\left(bất.đẳng.thức.đúng\right)\)
Ta chứng minh c2+d2<1
+Đặt x=1-a2-b2 và y =1-c2 - d2
-0 \(\le x,y\le1\)
Bđt <=> (2 - 2ac - 2bd)2\(\ge\) 4xy <=> ((a-c)2+(b-d)2+x+y)2\(\ge4xy\)
=> ((a-c)2+(b-d)2 + x + y)2 \(\ge\left(x+y\right)^2\ge4xy\left(đpcm\right)\)
bạn có thể giải thích không ạ