Có bao nhiêu số tự nhiên có 11 chữ số, trong đó chữ số 0 xuất hiện 2 lần, chữ số 1 xuất hiện 3 lần và mỗi chứ số 2,3,4,5,6,7 xuất hiện 1 lần?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chữ số hàng đơn vị có 5 cách chọn
Xếp 5 chữ số còn lại sao cho không có 2 chữ số 2 nào đứng cạnh nhau có đúng 1 cách dạng 2x2y2 trong đó x;y là chữ số bất kì khác được chọn từ 8 chữ số còn lại
Số số thỏa mãn: \(5.A_8^2=...\)
Chữ số 2 xuất hiện 3 lần.
Coi chữ số đc lập nên từ 6 chữ số tập \(A=\left\{1,2,2,2,3,4\right\}\)
Gọi số cần lập là \(\overline{abcdef}\in A\)
Chọn a có 6 cách chọn.
Xếp 5 số của \(A\backslash\left\{a\right\}\) vào 5 vị trí còn lại có 5! cách xếp.
Mà chữ số 2 lặp lại 3 lần\(\Rightarrow\) có 3! cách xếp.
Vậy số các số cần lập:
\(\dfrac{6\cdot5!}{3!}=120\left(số\right)\)
Đáp án A
Thêm vào hai chữ số 1 vào tập hợp các chữ số đã cho ta được tập E = {1,1,1,2,3,4}
Xem các số 1 là khác nhau thì mỗi hoán vị của 6 phần tử của E cho ta một số có 6 chữ số thỏa mãn bài toán. Như vậy ta có 6! số. Tuy nhiên khi hoán vị vủa ba số 1 cho nhau thì giá trị con số không thay đổi nên mỗi số như vậy ta đếm chúng đến 3! lần.
Vậy số các số thỏa mãn yêu cầu bài toán là 6 ! 3 ! = 4 . 5 . 6 = 120 s ố .
Chú ý: Ta có thể giải như sau, ta gọi số 6 chữ số cần tìm là a b c d e f , chọn 3 vị trí trong 6 vị trí để đặt ba chữ số 1 có C 6 3 cách, xếp 3 chữ số 2, 3, 4 vào ba vị trí còn lại có 3! cách do đó C 6 3 . 3 ! = 120
Số tự nhiên có 8 chữ số \(\overline{abcdefgh}\).
TH1: \(h=0\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}=420\) cách lập.
\(\Rightarrow\) Lập được 420 số thỏa mãn yêu cầu.
TH2: \(h=5\)
\(\overline{abcdefg}\) có \(\dfrac{7!}{2!.3!}-\dfrac{6!}{2!.3!}=360\) cách lập.
\(\Rightarrow\) Lập được 360 số thỏa mãn yêu cầu.
Vậy lập được \(420+360=780\) số tự nhiên thỏa mãn yêu cầu bài toán.
Bạn có thể giải thích phần công thức được không vậy. Mình hiểu hơi chậm. Bạn thông cảm. Mình cảm ơn nhiều.
Giả sử số cần tìm là abcd
Ta thực hiện các bước sau:
Số cần tìm là số tự nhiên nên a ≠ 0 suy ra a = 1. Như vậy ta còn chữ số 1 và hai chữ số 0 để xếp vào 3 vị trí còn lại
Nếu xếp chữ số 0 vào vị trí b thì ta được số cần tìm là 1001 hoặc1010
Nếu xếp chữ số 1 vào vị trí b thì ta được số cần tìm là 1100Vậy ta có ba số cần tìm là 1001; 1010; 1100
Đáp án B
Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số
(Đây là loại hoán vị lặp)
Đáp án D
Số cách sắp xếp 5 chữ số khác nhau là: A 9 5
Giữa 5 số đó có 6 chỗ trống nhưng số 0 không thể đứng đầu nên số cách sắp xếp 3 chữ số 0 là: C 5 3 = 10 cách
Vậy số các số gồm 8 chữ số thỏa mãn yêu cầu đề bài là: A 9 5 .10 = 151200