K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
24 tháng 1 2023

\(\left(n+3\right)⋮\left(n-1\right)=>\left(n-1\right)+4⋮\left(n-1\right)\\ =>4⋮\left(n-1\right)\\ =>n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{0;2;-1;3;-3;5\right\}\)

DT
24 tháng 1 2023

\(\left(4n+3\right)⋮\left(2n+1\right)=>2\left(2n+1\right)+1⋮\left(2n+1\right)\\ =>1⋮\left(2n+1\right)\\ =>2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\\ =>2n\in\left\{0;-2\right\}\\ =>n\in\left\{0;-1\right\}\)

22 tháng 11 2020

a, \(2n+7⋮n+1\)

\(2\left(n+1\right)+5⋮n+1\)

\(5⋮n+1\)hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n + 11-15-5
n0-24-6

b, \(4n+9⋮2n+3\)

\(2\left(2n+3\right)+3⋮2n+3\)

\(3⋮2n+3\)hay \(2n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

2n + 31-13-3
2n-2-40-6
n-1-20-3
14 tháng 12 2020

4-3=2 yêu anh ko hề sai

7 tháng 8 2023

a) \(25⋮n+2\left(n\in Z\right)\)

\(\Rightarrow n+2\in\left\{-1;1;-5;5;-25;25\right\}\)

\(\Rightarrow n\in\left\{-3;-1;-7;3;-27;23\right\}\)

b) \(2n+4⋮n-1\)

\(\Rightarrow2n+4-2\left(n-1\right)⋮n-1\)

\(\Rightarrow2n+4-2n+2⋮n-1\)

\(\Rightarrow6⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-2;4;-5;7\right\}\)

c) \(1-4n⋮n+3\)

\(\Rightarrow1-4n+4\left(n+3\right)⋮n+3\)

\(\Rightarrow1-4n+4n+12⋮n+3\)

\(\Rightarrow13⋮n+3\)

\(\Rightarrow n+3\in\left\{-1;1;-13;13\right\}\)

\(\Rightarrow n\in\left\{-4;-2;-15;10\right\}\)

7 tháng 8 2023

a) n ϵ{3;1;7;3;27;23}

b) {0;2;1;3;2;4;5;7}

c) n ϵ {4;2;15;10}

3 tháng 7 2016

a) n+3 chia hết cho n-2

=>n-2+5 chia hết cho n-2

=> 5 chia hết cho n-2

U(5)=1;5

=>n=3;7 

3 tháng 7 2016

Ta có: n + 3 chia hết cho n - 2

<=> n - 2 + 5 chia hết n - 2

=> 5 chia hết n - 2

=> n - 2 thuộc Ư(5) = {-1;1;-5;5}

=> n = {1;3;-3;7}

24 tháng 1 2017

a) n+3 chia hết cho n+1

Hay n+1+2 chia hết cho n+1

2 chia hết cho n+1

Hay n+1 thuộc ước của 2.

Mà Ư(2)=1;2

Suy ra n=0 hoặc n=1.

Vậy n=0 hoặc 1.

b)4n+3 chia hết cho 2n+1

Hay 2n+1+2n+2 chia hết cho n+1

2n+2 chia hết cho 2n+1

2n+1+1 chia hết cho 2n+1

1 chia hết cho 2n+1

Suy ra n=0

Vậy n=0

24 tháng 1 2017

a)Ta có:n+3 chia hết cho n-1

Hay (n-1)+4 chia hết cho n-1

Mà n-1 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 thuộc Ư(4)

=>Ư(4)={1;2;4}

=>n-1={1;2;4}

=>n={2;3;5}

b)Ta có:4n+3 chia hết cho 2n+1

Hay (4n+2)+1 chia hết cho 2n+1

=>2(2n+1)+1chia hết cho 2n+1

Mà 2(2n+1) chia hết cho 2n+1

=>1 chia hết cho 2n+1

=>2n+1=1

=>2n=1-1

=>2n=0

=>n=0:2

=>n=0

  • Chú ý:những thừ như" chia hết cho" bạn nên viết vào vở bằng kí hiệu

a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

23 tháng 2 2021

a)Ta có: 2n+9 chia hết n+3

<=>(2n+9)-2(n+3) chia hết n+3

<=>(2n+9)-(2n+6) chia hết n+3

<=>3 chia hết n+3

<=>n+3 thuộc {1;3}

<=>n=0

Vậy n = 0

b) Ta có 3n-1 chia hết cho 3-2n

=> 6n-2 chia hết cho 3-2n

=> 3(3-2n)-11 chia hết cho 3-2n

=> 11 chia hết cho 3-2n

=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}

• 3-2n=1 => n=1

• 3-2n=11=> n ko là số tự nhiên

Vậy n=1

c) (15 - 4n) chia hết cho n

=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}

d)  n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5 

e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 = 

13n-1-2

=> n-1 là ước dương của 13

=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13

=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12

Mà n thuộc N và n<8 => n=0 hoặc n=2

g)

6n+9⋮4n−1

⇒2.(6n+9)⋮4n−1

⇒12n+18⋮4n−1

⇒12n−3+21⋮4n−1

⇒3.(4n−1)+21⋮4n−1

Vì 3.(4n−1)⋮4n−1⇒21⋮4n−1

Mà 4n - 1 chia 4 dư 3; 4n−1≥−1 do n∈N

⇒4n−1∈{−1;3;7}

⇒4n∈{0;4;8}

17 tháng 8 2016

a) n + 2 chia hết cho n - 1

=> n - 1 + 3 chia hết cho n - 1

Do n - 1 chia hết cho n - 1 => 3 chia hết cho n - 1

Mà n thuộc N => n - 1 > hoặc = -1

=> n - 1 thuộc {-1 ; 1 ; 3}

=> n thuộc {0 ; 2 ; 4}

Những câu còn lại lm tương tự

17 tháng 8 2016

Giải:

a) \(n+2⋮n-1\)

\(\Rightarrow\left(n-1\right)+3⋮n-1\)

\(\Rightarrow3⋮n-1\)

\(\Rightarrow n-1\in\left\{\pm1;\pm3\right\}\)

+) \(n-1=1\Rightarrow n=2\)

+) \(n-1=-1\Rightarrow n=0\)

+) \(n-1=3\Rightarrow n=4\)

+) \(n-1=-3\Rightarrow n=-2\)

Vậy \(n\in\left\{2;0;4;-2\right\}\)

b) \(2n+7⋮n+1\)

\(\Rightarrow\left(2n+2\right)+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in\left\{\pm1;\pm5\right\}\)

+) \(n+1=1\Rightarrow n=0\)

+) \(n+1=-1\Rightarrow n=-2\)

+) \(n+1=3\Rightarrow n=2\)

+) \(n+1=-3\Rightarrow n=-4\)

Vậy \(n\in\left\{0;-2;2;-4\right\}\)

5 tháng 7 2018

Vì 3 n chia hết cho (5-2n)

=>2.3n+3(5-2n)=15 chia hết cho 5-2n

=>5-2n thuộc Ư(15)={1,3,5,15,-1,-3-5-15}

Mặt khác 5-2n nhỏ hơn hoặc bằng 5

5-2n thuộc {-15,-5,-3,-1,1,3,5}

=>N thuộc { 10,5,4,3,2,1,0}

Vì 3n chia hết cho 5-2n

=>2.3n+3(5-2n)=15 chia hết cho 5 - 2n

=> 5-2n thuộc U (15)€{1,3,5,15,-1,-3,-5,-15}

Mặt khác 5 trừ 2 n nhỏ hơn hoặc bằng 5

=>5-2n€{-15,-5,-3,-1,1,3,5}

=>N€{10,5,4,3,2,1,0}

a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)

Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)

Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)

Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)

Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)

Lập bảng xét giá trị cho từng trường hợp