1) Tìm x : 45,3×9<45,319
A) x=3 B) x=2 C) x=1 D) x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
=>x-3/x-9<0
=>3<x<9
c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)
⇒ \(\dfrac{5}{x}\) - 1 < 0 ⇒ \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)
Lập bảng ta có:
\(x\) | 0 5 |
\(x-5\) | + | + 0 - |
\(x\) | - 0 + | + |
\(\dfrac{x-5}{x}\) | - || + 0 - |
Theo bảng trên ta có \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)
Vậy tập hợp nghiệm của bất phương trình đã cho là:
S = (- ∞; 0) \(\cup\) (5 ; + ∞)
a) với x<1 thì x-1<0& x-5<0=> (x-1)(x-5) >0 => loại
1<x<5 thì x-1>0 và x-5<0 => (x-1)(x-5) <0 nhận
với x> 5 thì x-1>0& x-5>0=> (x-1)(x-5) >0 => loại
KL nghiệm 1<x<5
b) x-3>0 => x>3
c) (x-1)(x+1)(x-3)(x+3)<0
lý luận như (a) {-3...-1...1...3}
KL Nghiệm: -3<x<-1 hoạc -1<x<3
bài 2:
x+2={-3.-1,1,3}=> x={-5,-3,-1,1}
y-1={1,3,-3,-1}=> y={2,4,-2,0}
KL nghiệm (x,y)=(-5,2);(-3,4);(-1,-2); (1,0)
2,
b, ( x -7 ) . ( y + 2) =0
suy ra x -7 =0 hoặc y + 2 =0
suy ra x =7 hoặc x =-2
chỗ ghi chữ hoặc bạn dùng dấu hoặc thay thế nhé
vì tren máy tính nen mình khonng biết ghi dấu hoặc
tìm x sao cho :
a, 1-2x<7
b, (x-1)(x-2)>0
c, (x-2)(x+1)(x-4)<0
d, \(\frac{x^2\left(x-3\right)}{x-9}< 0\)
a. \(1-2x< 7\)
mà: \(1-n\le1\)với mọi n
\(\Rightarrow2x=n\Rightarrow x=\frac{n}{2}\)với mọi n
b.để: (x-1).(x-2)>0
=> x-1>0hoặc x-2<0
=>x>1hoặc x<2
(mik chỉ làm 2 câu mẫu thôi, bạn cố gắng tự làm nha, rất vui được kết bạn với bạn)
a) -3(x-4)+5(x-1)=-7
=>-3x+12+5x-5=-7
=>2x+7=-7
=>2x=-14=>x=-7
b) -4./x-8/+12=0
=>/x-8/=3
=>x-8=3 hoặc -3
(tự tính)
1 a x=4
b x=-4
c x=-7
d x=3
e x=10
g x=60
h x=36
i x=16
2a 1,2,3,4,5,6,7,8,9
b 1,2,3,4,5,6,7,8,9.........
c rỗng
3a 0
b 0
c10
1.a.
\(\left(x+3\right)\left(x-2\right)< 0\)
\(TH1:\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}\)
\(TH2:\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}}}\)
không biết có đúng không nữa!