Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử x1;x2 là hai nghiệm của phương trình x2+mx+m-1=0.Biểu thức x12+x22 đạt giá trị nhỏ nhất khi m có giá trị bằng
A.0 B.1 C.2 D.3
Áp dụng hệ thức vi ét:
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=m-1\end{matrix}\right.\)
⇒ \(\left(x_1+x_2\right)^2-2x_1.x_2=m^2-2\left(m-1\right)\)
\(\Leftrightarrow x_1^2+x_2^2=\left(m-1\right)^2\)
\(Min\left(x_1^2+x_2^2=0\right)\Leftrightarrow m=1\)
Chọn A
Áp dụng hệ thức vi ét:
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=m-1\end{matrix}\right.\)
⇒ \(\left(x_1+x_2\right)^2-2x_1.x_2=m^2-2\left(m-1\right)\)
\(\Leftrightarrow x_1^2+x_2^2=\left(m-1\right)^2\)
\(Min\left(x_1^2+x_2^2=0\right)\Leftrightarrow m=1\)
Chọn A