K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2015

\(C=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{97.98}+\frac{1}{99.100}\)

\(C=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{99}-\frac{1}{100}\)

\(C=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{98}+\frac{1}{100}\right)\)

\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(C=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(D=\frac{1}{51.100}+\frac{1}{52.99}+\frac{1}{53.98}+...+\frac{1}{99.52}+\frac{1}{100.51}\)

\(D=\frac{1}{151}.\left(\frac{151}{51.100}+\frac{151}{52.99}+\frac{151}{53.98}+...+\frac{151}{99.52}+\frac{151}{100.51}\right)\)

\(D=\frac{1}{151}.\left(\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+...+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\right)\)

\(D=\frac{1}{151}.\left(\frac{2}{100}+\frac{2}{99}+...+\frac{2}{51}\right)\)

\(D=\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)\)

\(\Rightarrow C:D=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)}\)

\(\Rightarrow C:D=\frac{151}{2}=75\frac{1}{2}\)

 

4 tháng 4 2016

Khó hiểu vậy ạ, giảng kĩ đc ko bạn :)

9 tháng 6 2015

B=1/51.100+1/52.99+...+1/100.51

=>151B=1/51+1/100+1/52+1/99+...+1/100+1/51

=>151B/2=1/51+1/52+1/53+1/54+...+1/100

=>B=2/151.(1/51+1/52+1/53+1/54+...+1/100)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}\)

\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Mặt khác:

\(151B=\frac{51+100}{51.100}+\frac{52+99}{52.99}+....+\frac{99+52}{99.52}+\frac{100+51}{100.51}\)

\(=\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+....+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\)

\(=\left(\frac{1}{100}+\frac{1}{99}+....+\frac{1}{52}+\frac{1}{51}\right)+\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)\)

\(=2\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)=2A\)

\(\Rightarrow \frac{A}{B}=\frac{151}{2}\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}\)

\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Mặt khác:

\(151B=\frac{51+100}{51.100}+\frac{52+99}{52.99}+....+\frac{99+52}{99.52}+\frac{100+51}{100.51}\)

\(=\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+....+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\)

\(=\left(\frac{1}{100}+\frac{1}{99}+....+\frac{1}{52}+\frac{1}{51}\right)+\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)\)

\(=2\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)=2A\)

\(\Rightarrow \frac{A}{B}=\frac{151}{2}\)

15 tháng 6 2017

\(B=1+4+4^2+...+4^{2016}\)

\(4.B=4+4^2+4^3+...+4^{2017}\)

\(4B-B=3B=4^{2017}-1\)

\(B=\frac{4^{2017}-1}{3}\)

15 tháng 6 2017

B=1+4+42+...+42016

4B=4(1+4+...+42016)

4B=4+42+43+...+42017

4B-B=(4+42+43+...+42016)-(1+42+...+42016)

3B=4+42+43+...+42017-1-4-42-43-...-42016

loại các số giống nhau vi chung  khác giấu nên sẽ có hiệu =0

3B= 42017-1

B=\(\frac{4^{2017}-1}{3}\)

19 tháng 1 2022

Ngắn sao không trình bày vào vở đi 

19 tháng 1 2022

ngắn wá tời luôn áh 

23 tháng 10 2021

a, \(9x+3x\left(2x^2+x-3\right)=9x+6x^3+3x^2-9x\)

b, \(\left(3x-1\right)^2-9x\left(x+1\right)=9x^2-6x+1-9x^2-9x=1-15x\)

c, \(\left(x-1\right)^2-x\left(x+1\right)=x^2-2x+1-x^2-x=1-3x\)