K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

Áp dụng bđt AM - GM:

\(T=\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}=\left(\dfrac{1}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\right)+\dfrac{8}{9}\dfrac{a+b+c}{\sqrt[3]{abc}}\ge2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.3=\dfrac{2}{3}+\dfrac{8}{3}=\dfrac{10}{3}\).

Đẳng thức xảy ra khi a = b = c.

Vậy Min T = \(\dfrac{10}{3}\) khi a = b = c.

19 tháng 6 2015

ta có: \(a^2+ab+b^2=\frac{3}{4}\left(a+b\right)^2+\frac{1}{4}\left(a-b\right)^2\)vì (a-b)^2>=0 => \(a^2+ab+b^2\ge\frac{3}{4}\left(a+b\right)^2\Leftrightarrow\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}}{2}\left(a+b\right)\)

gọi là A đi. tương tự thì \(A\ge\frac{\sqrt{3}}{2}\left(a+b+b+c+a+c\right)=\frac{\sqrt{3}}{2}.2.1\left(a+b+c=1\right)=\sqrt{3}\Rightarrow MinA=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\)

24 tháng 1 2018

nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé

23 tháng 1 2018

Nhỏ nhất hay lớn nhất