K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

Theo bài ra , ta có :

\(\frac{6n-7}{n-1}=\frac{6n-6-1}{n-1}=\frac{6\left(n-1\right)-1}{n-1}=\frac{6\left(n-1\right)}{n-1}-\frac{1}{n-1}=6-\frac{1}{n-1}\)

Mà \(\frac{1}{n-1}\)là phân số tối giản 

\(\Rightarrow6-\frac{1}{n-1}\)là p/s tối giản 

\(\Rightarrow\frac{6n-7}{n-1}\)là phân số tối giản (ĐPCM)

31 tháng 3 2021

Gọi ƯCLN(n+2018;n+2019) = a

Có n+2018 chia hết cho a

và  n+2019 chia hết cho a

=> (n+2019)-(n+2018) chia hết cho a

=> 1 chia hết cho a 

=> a = 1

ƯCLN(n+2018;n+2019) = 1

=> \(\dfrac{n+2018}{n+2019}\) là phân số tối giản

31 tháng 3 2021

Mình đưa ví dụ nhé:

       n= 1

=>   n+2018/n2019  = 2019/2020

 Bạn thấy đó 2018/ 2019 là phân số tối giản nếu cùng cộng cả tử và mẫu với bao nhiêu đi nữa thì nó cung sẽ luôn tối giản.

    ví dụ như; n+2/n+3

     n=6 

=> 8/9

9 tháng 3 2021

Đặt \(n+1;2n+3=d\)

\(n+1⋮d\Rightarrow2n+2\)(1)

\(2n+3⋮d\)(2)

Lấy 2 - 1 ta có : 

\(2n+3-2n-2⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm

14 tháng 2 2019

Bạn ơi có sai đề không?Bởi nếu n là số lẻ thì cả n+1 và n+3 đều là số chẵn ,đều chia hết cho 2 và có thể rút gọn mà,sao là phân số tối giản được

20 tháng 2 2016

2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d

suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)={2;-2;1;-1}

vì 2n+1 là số lẻ nên d={1;-1}

suy ra 2n+1phần 4n+6 là phân số tối giản

16 tháng 7 2017

2n+1chia hết cho d ; 4n+6 chia hết cho d suy ra 2n+3 chia hết cho d

suy ra (2n+3)-(2n+1) chia hết cho d suy ra 2 chia hết cho d hay d thuộc U(2)

={2;-2;1;-1}

vì 2n+1 là số lẻ nên d={1;-1}

suy ra 2n+1phần 4n+6 là phân số tối giản

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.

7 tháng 4 2018

Gọi ƯCLN của n và n + 1 là d (d \(\in\)N và d \(\ge\)1).

Khi đó n \(⋮\)d và n + 1\(⋮\)d. Suy ra n + 1 - n \(⋮\)d => 1 \(⋮\)d

Vậy d = 1

Như vậy phân số \(\frac{n}{n+1}\)là phân số tôi giản.

10 tháng 2 2018

Gọi \(ƯCLN\left(n+1;2n+3\right)\)là d.Ta có:

\(n+1⋮d\Rightarrow2n+2⋮d\)

\(2n+3⋮d\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy p/s tối giản