Cho đường tròn (O) và điểm A nằm bên ngoài (O). Kẻ 2 tiếp tuyến AM,AN với đường tròn (O) (M,N là các tiếp điểm). CM: từ giác AMON nội tiếp
Giải chi tiết giúp mình . Mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
b: ΔOBC cân tại O có OI là trung tuyến
nên OI vuông góc BC
Xét (O) có
AM,AN là tiếp tuyến
=>AM=AN
mà OM=ON
nên OA là trung trực của MN
=>OA vuông góc MN tại H
Xét ΔAHK vuông tại H và ΔAIO vuông tại I có
góc HAK chung
=>ΔAHK đồng dạng vớiΔAIO
=>AH/AI=AK/AO
=>AH*AO=AK*AI=AB*AC
Ta có AM ; AN lần lượt là tiếp tuyến đường tròn(O) với M;N là tiếp điểm
nên ^AMO = ^ANO = 900
Xét tứ giác AMON có ^AMO + ^ANO = 1800
mà 2 góc này đối nhau
Vậy tứ giác AMON nt 1 đường tròn
a: Gọi giao điểm của MN với OA là H
Xét (O) có
AM,AN là tiếp tuyến
Do đó: AM=AN và AO là phân giác của \(\widehat{MAN}\)
AO là phân giác của góc MAN
=>\(\widehat{MAO}=\widehat{NAO}\)
OM=ON
=>O nằm trên đường trung trực của MN(1)
AM=AN
=>A nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra AO là đường trung trực của MN
=>AO vuông góc với MN tại trung điểm của MN
=>AO vuông góc với MN tại H và H là trung điểm của MN
ΔAMO vuông tại M
=>\(MA^2+MO^2=OA^2\)
=>\(MA^2+3^2=5^2\)
=>\(MA^2=5^2-3^2=16\)
=>MA=4(cm)
Chu vi tứ giác OMAN là:
OM+MA+AN+ON
=3+4+4+3
=6+8=14(cm)
Xét ΔOMA vuông tại M có MH là đường cao
nên \(MH\cdot OA=MO\cdot MA\)
=>\(MH\cdot5=3\cdot4=12\)
=>MH=2,4(cm)
H là trung điểm của MN
=>MN=2*MH
=>MN=2*2,4
=>MN=4,8(cm)
b: SO\(\perp\)OM
MA\(\perp\)OM
Do đó: SO//MA
=>\(\widehat{SOA}=\widehat{MAO}\)
mà \(\widehat{MAO}=\widehat{NAO}\)(cmt)
nên \(\widehat{SOA}=\widehat{MAO}=\widehat{NAO}\)
=>\(\widehat{SOA}=\widehat{SAO}\)
=>SA=SO
Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O
=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\) => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)
Xét từ giác AMON có :
AMO + ANO = 90 + 90 = 180
Mà 2 góc này ở vị try đối diện nhau
=> Tứ giác AMON nội tiếp < đpcm>
a: góc OMA+góc ONA=180 độ
=>OMAN nội tiếp
b: OMAN nội tiếp
=>góc AOM=góc ANM
mà góc AOM=góc AOn
nên góc AON=góc ANM
a, Vì AM; AN lần lượt là tiếp tuyến đường tròn (O) với M;N là tiếp điểm
=> ^AMO = ^ANO = 900
mà AM = AN (tc tiếp tuyến cắt nhau) ; OM = ON = R
Vậy OA là đường trung trực đoạn MN => OA vuông MN
Xét tứ giác AMON có
^AMO + ^ANO = 1800
mà 2 góc này đối Vậy tứ giác AMON là tứ giác nt 1 đường tròn
b, Xét tam giác AMB và tam giác ACM có
^A _ chung ; ^AMB = ^ACB ( cùng chắn cung BM )
Vậy tam giác AMB ~ tam giác ACM (g.g)
\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\Rightarrow AM^2=AB.AC\)
c, Xét tam giác OMA vuông tại M, đường cao MH
Ta có \(AM^2=AH.AO\)( hệ thức lượng )
=> \(AB.AC=AH.AO\Rightarrow\dfrac{AB}{AO}=\dfrac{AH}{AC}\)
Xét tam giác ABH và tam giác AOC có
^A _ chung
\(\dfrac{AB}{AO}=\dfrac{AH}{AC}\left(cmt\right)\)
Vậy tam giác ABH ~ tam giác AOC (c.g.c)
=> ^ABH = ^AOC ( góc ngoài đỉnh B )
Vậy tứ giác BHOC là tứ giác nt 1 đường tròn
d, Ta có BHOC nt 1 đường tròn (cmc)
=> ^OHC = ^OBC (góc nt chắc cung CO)
=> ^AHB = ^ACO (góc ngoài đỉnh H)
mà ^OCB = ^OBC do OB = OC = R nên tam giác OBC cân tại O
=> ^OHC = ^AHB
mà ^CHN = 900 - ^OHC
^NHB = 900 - ^AHB
=> ^CHN = ^NHB
=> HN là phân giác của ^BHC
Xét tứ giác OMAN có
góc OMA+góc ONA=180 độ
nên OMAN là tứ giác nội tiếp