Cho tam giác A B C , biết A ( 2 ; 1 ) , B ( 4 ; 3 ) và C ( 6 ; 7 ) .Lập phương trình tổng quát của đường cao A H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Diện tích tam giác là: \(\frac{h_A.a}{2}=\frac{3.6}{2}=9\)(đvdt)
Câu 2: Diện tích tam giác là: \(\frac{1}{2}ab.\sin C=\frac{1}{2}.4.5.\sin60^o=5\sqrt{3}\)(đvdt)
Câu 2: Ta có: \(\hept{\begin{cases}c^2=a^2+b^2-2ab.\cos C\\a^2+b^2>c^2\end{cases}\Rightarrow c^2>c^2-2ab.\cos C\Leftrightarrow2ab.\cos C>0}\)
\(\Rightarrow\cos C>0\Rightarrow C< 90^o\)
Vậy C là góc nhọn
a;b;c là 3 cạnh của tam giác => a; b; c dương
Với a; b dương ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) => a + b \(\ge\) 2. \(\sqrt{ab}\)
Tương tự, b + c \(\ge\) 2.\(\sqrt{bc}\); c + a \(\ge\)2. \(\sqrt{ca}\)
=> (a + b).(b+c).(c+a) \(\ge\)8. \(\sqrt{ab}\).\(\sqrt{bc}\).\(\sqrt{ca}\) = 8.abc
Dấu = xảy ra khi a = b = c
=> tam giác có 3 cạnh là a; b; c là tam giác đều
Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c
\(a+b\ge2\sqrt{ab}\) ; \(b+c\ge2\sqrt{bc}\); \(c+a\ge\sqrt{ca}\)
Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Dấu " = " xảy ra khi a = b = c => tam giác đó đều
Do a,b,c là 3 cạnh là 3 cạnh tam giác =>a,b,c>0
Áp dụng BĐT co si cho 2 số dương ta có:
a+b\(\ge2\sqrt{ab}\)
b+c\(\ge2\sqrt{bc}\)
a+c\(\ge2\sqrt{ac}\)
=>(a+b)(b+c)(c+a)>\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\)
Dấu bằng xảy ra <=>a=b b=c c=a=>a=b=c
Mà theo đề bài (a+b)(b+c)(c+a)=8abc
=>a=b=c=>tam giác đó là tam giác đều
a, Ta có : \(A:B:C=2:3:4\Rightarrow\frac{A}{2}=\frac{B}{3}=\frac{C}{4}\)
và \(A+B+C=180^0\)(tổng 3 góc trong tam giác)
Theo tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{A}{2}=\frac{B}{3}=\frac{C}{4}=\frac{A+B+C}{2+3+4}=\frac{180}{9}=20\Rightarrow A=40^0;B=60^0;C=80^0\)
tương tự với b nhé
\(\overrightarrow{BC}=\left(2;4\right)=2\left(1;2\right)\)
Do đường cao AH vuông góc BC nên nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình AH qua A có dạng:
\(1\left(x-2\right)+2\left(y-1\right)=0\Leftrightarrow x+2y-4=0\)
BC=(1;2)
AH (1;2)(1;2) => vtpt
Phương trình AH qua A có dạng:
1(�−2)+2(�−1)=0⇔�+2�−4=01(x−2)+2(y−1)=0⇔x+2y−4=0