2x-3= 2(x-3)
x^2 -4x+6=0
chứng tỏ vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo câu hỏi của đắng sôcôla trên hoc24.vn nha
a) 4x2+4x+2
=4x2+2x+2x+2
=2x.(2x+1)+2x+1+1
=2x.(2x+1)+(2x+1)+1
=(2x+1)2+1
Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm
b) x2+x+1
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm
Phần c để tớ nghĩ đã
c: \(P\left(-1\right)=-3-5-4+2+6+4=0\)
Vậy: x=-1 là nghiệm của P(x)
\(Q\left(-1\right)=4+1+3+2-7+1=4< >0\)
=>x=-1 không là nghiệm của Q(x)
\(2x^2+8x+17=2.\left(x^2+2.x.2+2^2\right)+9=2.\left(x+2\right)^2+9\)
Ta có: \(2.\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x+2\right)^2+9\ge9\forall x\)
\(\Rightarrow2x^2+8x+17>0\forall x\)
\(\Rightarrow\)đa thức \(2x^2+8x+17\)vô nghiệm
đpcm
\(-x^2+4x-6=-\left(x^2+2.x.2+2^2\right)-2=-\left(x+2\right)^2-2\)
Ta có:\(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2-2\le-2\forall x\)
\(\Rightarrow-\left(x+2\right)^2-2< 0\forall x\)
\(\Rightarrow\)đa thức \(-x^2+4x-6\)vô nghiệm
đpcm
Tham khảo nhé~
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
Ta có:
2x – 3 = 2(x – 3)
⇔ 2x – 3 = 2x – 6
⇔ 2x - 2x = 3 – 6
⇔ 0x = -3 (vô lí)
Vậy phương trình đã cho vô nghiệm
\(2x-3=2\left(x-3\right)\\ \Leftrightarrow2x-3=2x-6\\ \Leftrightarrow-3=-6\left(voli\right)\)
\(\Rightarrow\) phương trình vô nghiệm
\(x^2-4x+6=0 \)
Ta có
\(x^2-4x+6=x^2-2.2.x+2^2+2=\left(x-2\right)^2+2\ge2\forall x\)
\(=>x^2-4x+6>0\)
\(\Rightarrow\) phương trình vô no
\(2x-1=2\left(x-3\right)\\ < =>2x-1=2x-6\\ < =>2x-2x=-6+1\\ < =>0x=-5\left(voli\right)\)
\(x^2-4x+6=0\\ < =>x^2-4x+4+2=0\\ < =>\left(x-2\right)^2+2=0\left(voli\right)\)