K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

Ta có :

\(\left|x\right|\ge0\)

\(\left|x+2\right|\ge0\)

\(\Rightarrow\left|x\right|+\left|x+2\right|\ge0\)

\(\Rightarrow4x-2010\ge0\)

\(\Rightarrow4x\ge2010\)

\(\Rightarrow x\ge0\)

=> x + x + 2 = 4x - 2010

=> 2x + 2 = 4x - 2010

=> 4x - 2x = 2 + 2010

=> 2x = 2012

=> x = 1006

8 tháng 3 2017

+/ x\(\ge\)0 => phương trình <=> x+x+2=4x-2010 => x=2012:2=1006

+/ x\(\le\)-2 => phương trình <=> -x-x-2=4x-2010 => x=2008:6=> Loại

+/ -2\(\le\)x\(\le\)0 => phương trình <=> -x+x+2=4x-2010 => x=2012:4=503

ĐS: x=1006 và x=503

16 tháng 7 2019

\(a,ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm1\end{cases}}\)

Sao phân số thứ 2 là \(\frac{1-2}{1+x}\) .Bạn chép đề thật chuẩn mới trả lời đúng nhé

16 tháng 12 2018

\(\left(2x-1\right)\left(x-5\right)-x^2+10x-25=0\)

\(\left(2x-1\right)\left(x-5\right)-\left(x^2-10x+25\right)=0\)

\(\left(2x-1\right)\left(x-5\right)-\left(x-5\right)^2=0\)

\(\left(x-5\right)\left(2x-1-x+5\right)=0\)

\(\left(x-5\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)

16 tháng 12 2018

\(\left(5n-3\right)^2-9=\left(5n-3\right)^2-3^2=\left(5n-3-3\right)\left(5n-3+3\right)=5n\left(5n-6\right)\)

Ta có: \(5⋮5\)

\(\Rightarrow5n\left(5n-6\right)⋮5\forall n\in Z\)

\(\Rightarrow\left(5n-3\right)^2-9⋮5\forall n\in Z\)

                                  đpcm

8 tháng 3 2018

Để \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\) thì phải có một hoặc ba thừa số bé hơn 0 

Mà \(x^2-10< x^2-7< x^2-4< x^2-1\)

Trường hợp có một thừa số bé hơn 0 : 

\(\Leftrightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7;x^2-4;x^2-1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< 10\\x^2>7\end{cases}}\Leftrightarrow7< x^2< 10\)

\(\Rightarrow\)\(x^2=9\)

\(\Rightarrow\)\(x=\pm3\)

Trường hợp có ba thừa số bé hơn 0 : 

\(\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4;x^2-7;x^2-10< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\Leftrightarrow1< x^2< 4\) ( loại vì \(x\inℤ\) ) 

Vậy \(x=3\) hoặc \(x=-3\)

Học tốt 

10 tháng 1 2017

Ngồi nhầm lớp rồi 

\(\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)

\(-\sqrt{5}< -\sqrt{3}< \sqrt{3}< \sqrt{5}\) tưởng như vô bổ 

\(-\sqrt{5}< x< \sqrt{3}\)

\(\sqrt{3}< x< \sqrt{5}\)

14 tháng 1 2017

không nhầm đâu-tui làm đc rùi

14 tháng 2 2018

mk làm ở bên trên rồi đóa

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:

1. Ta thấy: 
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$

$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$

2.

Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>