Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left|x\right|\ge0\)
\(\left|x+2\right|\ge0\)
\(\Rightarrow\left|x\right|+\left|x+2\right|\ge0\)
\(\Rightarrow4x-2010\ge0\)
\(\Rightarrow4x\ge2010\)
\(\Rightarrow x\ge0\)
=> x + x + 2 = 4x - 2010
=> 2x + 2 = 4x - 2010
=> 4x - 2x = 2 + 2010
=> 2x = 2012
=> x = 1006
+/ x\(\ge\)0 => phương trình <=> x+x+2=4x-2010 => x=2012:2=1006
+/ x\(\le\)-2 => phương trình <=> -x-x-2=4x-2010 => x=2008:6=> Loại
+/ -2\(\le\)x\(\le\)0 => phương trình <=> -x+x+2=4x-2010 => x=2012:4=503
ĐS: x=1006 và x=503
Lời giải:
1. Ta thấy:
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$
$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$
2.
Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
tìm x,y,z thuộc Q biết
\(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\)
Xét đẳng thức , ta thấy :
\(\left|x+\frac{3}{4}\right|\ge0\)
\(\left|y-\frac{1}{5}\right|\ge0\)
\(\left|x+y+z\right|\ge0\)
=> \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|\ge0\)
Mà \(\left|x+\frac{3}{4}\right|+\left|y-\frac{1}{5}\right|+\left|x+y+z\right|=0\) (đề bài)
=> \(\hept{\begin{cases}\left|x+\frac{3}{4}\right|=0\\\left|y-\frac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{4}\\y=\frac{1}{5}\\z=-\left(-\frac{3}{4}+\frac{1}{5}\right)=\frac{11}{20}\end{cases}}\)
a) x(x+2) > 0
=> x2 + 2x > 0
Vì x2 luôn ≥ 0 với mọi x nên để x2 + 2x > 0 thì 2x > 0 => x>0
Vậy với x>0 thì x(x+2) > 0
b) ( x -1 )( x + 3) < 0
<=> x2 + 3x - x - 3 > 0
<=> x2 + 2x - 3 > 0
Vì x2 luôn ≥ 0 với mọi x nên để x2 + 2x - 3 < 0 thì 2x - 3 < 0 => 2x < 3 => x < 3/2
Vậy với x<3/2 thì ( x -1 )( x + 3) < 0
c) ( 1 - x )( y + 1 ) =-3
Ta có bảng:
1 - x | 1 | -1 | 3 | -3 |
y + 1 | 3 | -3 | 1 | -1 |
x | 0 | 2 | -2 | 4 |
y | 2 | -4 | 0 | -2 |
Vậy với x thuộc {…} và y thuộc {…} thì ( 1 - x )( y + 1 ) =-3
Làm mẫu câu a nha
a) \(x\left(x+2\right)>0\)
Th1 : \(\hept{\begin{cases}x>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>-2\end{cases}\Rightarrow}x>0}\)
Th2 : \(\hept{\begin{cases}x< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< -2\end{cases}}\Rightarrow x< -2}\)
Vậy ta có : \(\orbr{\begin{cases}x>0\\x< -2\end{cases}}\)
Ngồi nhầm lớp rồi
\(\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)\)
\(-\sqrt{5}< -\sqrt{3}< \sqrt{3}< \sqrt{5}\) tưởng như vô bổ
\(-\sqrt{5}< x< \sqrt{3}\)
\(\sqrt{3}< x< \sqrt{5}\)
không nhầm đâu-tui làm đc rùi