K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=x^2+2x+1+4y^2-4xy+x^2+y^2-y+1/4+3/4

=(x+1)^2+(2y-x)^2+(y-1/2)^2+3/4>=3/4>0 với mọi x,y

2 tháng 1 2023

cảm ơn ạ

 

25 tháng 6 2018

Giải:

a) \(x^2+xy+y^2+1\)

\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)

Vậy ...

26 tháng 6 2018

Hắc Hường BĐT ở đây. Cj nghĩ cấp 2 chỉ học 1 số loại này thôi

1.BĐT Cauchy

\(A+B\ge2\sqrt{AB}\) (Áp dụng cho 2 số k âm)

\(A+B+C\ge3\sqrt[3]{ABC}\) (Áp dụng cho 3 số k âm )

2.BĐT Bunhiacopxki

\(\left(Ax+By\right)^2\le\left(A^2+B^2\right)\left(x^2+y^2\right)\)

3.BĐT Mincopxki

\(\sqrt{A^2+x^2}+\sqrt{B^2+y^2}\ge\sqrt{\left(A+B\right)^2+\left(x+y\right)^2}\)

4.BĐT Chebyshev

Với A>B, x>y thì

\(\left(A+B\right)\left(x+y\right)\le2\left(ax+by\right)\)

Vs 3 sô thì bên vế phải thay 2 bằng 3

5.BĐT Benuli

\(\left(1+h\right)^n\ge1+nh\)

6.BĐT Holder

Với a,b,c,x,y,z,m,n,p là sô thực dương

\(\left(a^3+b^3+c^3\right)\left(x^3+y^3+z^3\right)\left(m^3+n^3+p^3\right)\ge\left(axm+byn+czp\right)^3\)

7.BĐT Sơ-vác-sơ

\(\dfrac{a_1^2}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)

8. \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

9. \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

10. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)

11. \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\ge4xy\)

12. \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)13. \(a^3+b^3\ge a^2b+ab^2\)

14. \(\dfrac{a^3}{b}\ge a^2+ab-b^2\)( Ít áp dụng )

15. \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

\(\left|\dfrac{x}{y}\right|+\left|\dfrac{y}{x}\right|\ge\left|\dfrac{x}{y}+\dfrac{y}{x}\right|\ge2\)

16. \(a^2+b^2+c^2\ge ab+ac+bc\)

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)

Đặt \(A=x^2+5y^2+2x-4xy-10y+14\)

\(A=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)

\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(A=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)

\(\Rightarrow A>0\left(đpcm\right)\)

6 tháng 6 2018

a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)

=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0

vậy....

b

29 tháng 8 2016

\(a,x^2+5y^2+2x-4xy-10y+14\)

\(=x^2+2x-4xy+5y^2-10y+14\)

\(=x^2+2x\left(1-2y\right)+5y^2-10y+14\)

\(=x^2+2.x.\left(1-2y\right)+\left(1-2y\right)^2+5y^2-10y-\left(1-2y\right)^2+14\)

\(=\left(x+1-2y\right)^2+5y^2-10y-\left(1-4y+4y^2\right)+14\)

\(=\left(x+1-2y\right)^2+5y^2-10y-1+4y-4y^2+14\)

\(=\left(x+1-2y\right)^2+y^2-6y+13=\left(x+1-2y\right)^2+y^2-2.y.3+9+4\)

\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4>0\) với mọi x,y (đpcm)

b,tương tự

14 tháng 1 2021

\(x^2-4xy+5y^2+2x-8y+5=\left(x-2y+1\right)^2+\left(y-2\right)^2\ge0\forall x,y\).

14 tháng 1 2021

x2 - 4xy + 5y2 + 2x - 8y + 5

= x2 + 4y2 + 1 - 4xy + 2x  - 4y + y2 - 2y + 1

= (x - 2y + 1)2 + (y - 1)≥ 0

21 tháng 6 2016

\(VT=x^2+2x\left(1-2y\right)+\left(1-2y\right)^2+\left(5y^2-\left(1-2y\right)^2-10y+14\right)\)

 \(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)  voi  moi  x;y

25 tháng 7 2019

Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

29 tháng 7 2017

a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)

b/ \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)

14 tháng 10 2018

       \(x^2+4y^2+z^2-2x-6z+8y+15\)

\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)

\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)

       \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)

Chúc bạn học tốt.