K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Ta có : |9x - 7| = 5x - 3

\(\Leftrightarrow\orbr{\begin{cases}9x-7=5x-3\\-9x+7==5x-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}9x-5x=-3+7\\-9x-5x=-3-7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x=4\\-14x=-10\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{5}{7}\end{cases}}\)

26 tháng 11 2021

Answer:

Câu đầu bạn xem lại.

\(\left(3x+4\right)^2+\left(4x-3\right)^2+\left(2+5x\right).\left(2-5x\right)\)

\(=\left(3x\right)^2+2.2x.4+4^2+\left(4x\right)^2-2.4x.3+3^2+2^2-\left(5x\right)^2\)

\(=9x^2+24x+16+16x^2-24x+9+4-25x^2\)

\(=\left(9x^2+16x^2-25x^2\right)+\left(24x-24x\right)+\left(16+9+4\right)\)

\(=29\)

\(\left(5x+y\right).\left(25x^2-5xy+y^2\right)-\left(5x-y\right).\left(25x^2+5xy+y^2\right)\)

\(=\left(5x+y\right).[\left(5x\right)^2-5x.y+y^2]-\left(5x-y\right).[\left(5x\right)^2+5x.y+y^2]\)

\(=\left(5x\right)^3+y^3-[\left(5x\right)^3-y^3]\)

\(=\left(5x\right)^3+y^3-\left(5x\right)^3+y^3\)

\(=2y^3\)

26 tháng 2 2021

a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)

\(TH_1:3x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

\(TH_2:-2x-7=0\)

\(\Leftrightarrow x=-\dfrac{7}{2}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)

b) \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)

\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(TH_1:x=0\)

\(TH_2:x-1=0\)

\(\Leftrightarrow x=1\)

\(TH_3:2x-3=0\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)

\(TH_1:3x+4=0\)

\(\Leftrightarrow x=-\dfrac{4}{3}\)

\(TH_2:2x-4=0\)

\(\Leftrightarrow x=2\)

Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Rightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x-9x=-6-16+12\)

\(\Leftrightarrow11x=-10\)

\(\Leftrightarrow x=-\dfrac{10}{11}\)

Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)

26 tháng 2 2021

a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow3x+1=5x+8\)

\(\Leftrightarrow3x-5x=8-1\)

\(\Leftrightarrow-2x=7\)

\(\Leftrightarrow x=\dfrac{-7}{2}\)

Vậy \(X=\dfrac{-7}{2}\)

b) Ta có: \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow9x^2-16-3x^2-4x=0\)

\(\Leftrightarrow6x^2-4x-16=0\)

\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)

\(\Leftrightarrow3x^2-6x+4x-8=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)

Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Leftrightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x+16-12-9x+6=0\)

\(\Leftrightarrow11x+10=0\)

\(\Leftrightarrow x=\dfrac{-10}{11}\)

Vậy \(x=\dfrac{-10}{11}\)

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

a) 

 \(\begin{matrix}N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\^-M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\\overline{N\left(x\right)-M\left(x\right)=-3x^4+18x^3-2x^2-4x-1}\end{matrix}\)

b) 

   \(\begin{matrix}M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\^+N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\\overline{M\left(x\right)+N\left(x\right)=-5x^4+14x+\dfrac{5}{3}}\end{matrix}\)

 

25 tháng 6 2018

\(x^3+9x=0\)

<=> \(x\left(x^2+9\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x^2+9=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)

<=> \(x=0\)

\(9x^2-4-2\left(3x-2\right)^2=0\)

<=> \(\left(9x^2-4\right)-2\left(3x-2\right)^2=0\)

<=> \(\left[\left(3x\right)^2-2^2\right]-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)

<=> \(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)

<=> \(\left(3x-2\right)\left(-3x+6\right)=0\)

<=> \(\left(3x-2\right)3\left(-x+2\right)=0\)

<=> \(3\left(3x-2\right)\left(2-x\right)=0\)

<=> \(\orbr{\begin{cases}3x-2=0\\2-x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)

\(\left(x^3-x^2\right)-4x+8x-4=0\)

<=> \(\left(x^3-x^2\right)+\left(4x-4\right)=0\)

<=> \(x^2\left(x-1\right)+4\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(x^2+4\right)=0\)

<=> \(\orbr{\begin{cases}x-1=0\\x^2+4=0\end{cases}}\)

<=> \(x=1\)

\(\left(25x^2-10x\right):\left(-5x\right)-3\left(x-2\right)=4\)

<=> \(5x\left(5x-2\right)\left(-\frac{1}{5x}\right)-3\left(x-2\right)=4\)

<=> \(-\left(5x-2\right)-3\left(x-2\right)=4\)

<=> \(\left(5x-2\right)+3\left(x-2\right)=-4\)

<=> \(5x-2+3x-6=-4\)

<=> \(8x-8=-4\)

<=> \(8\left(x-1\right)=-4\)

<=> \(x-1=-\frac{1}{2}\)

<=> \(x=-\frac{3}{2}\)

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm

 

23 tháng 7 2017

Ta có:

\(A=\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)

\(=\left(9x-1+1-5x\right)^2\)

\(=4x^2\)

\(=16x^2\)

=(9x-1+1-5x)2=(4x)2=16x2

31 tháng 7 2018

a) ta có : \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)

\(\Leftrightarrow36x^2-12x-36x^2+27x=30\Leftrightarrow15x=30\Leftrightarrow x=2\)

b) điều kiện : \(x\ne\dfrac{1}{5};x\ne1;x\ne\dfrac{3}{5}\)

ta có : \(\dfrac{3}{5x-1}+\dfrac{2}{3-3x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\)

\(\Leftrightarrow\dfrac{3\left(3-3x\right)+2\left(5x-1\right)}{\left(5x-1\right)\left(3-3x\right)}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\)

\(\Leftrightarrow\dfrac{x+7}{3-3x}=\dfrac{4}{3-5x}\Leftrightarrow\left(x+7\right)\left(3-5x\right)=4\left(3-3x\right)\)

\(\Leftrightarrow-5x^2-20+9=0\)

ta có : \(\Delta'=\left(10\right)^2+5\left(9\right)=145>0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x=\dfrac{10+\sqrt{145}}{-5};x=\dfrac{10-\sqrt{145}}{-5}\)