K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2017

Ta có : |9x - 7| = 5x - 3

\(\Leftrightarrow\orbr{\begin{cases}9x-7=5x-3\\-9x+7==5x-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}9x-5x=-3+7\\-9x-5x=-3-7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x=4\\-14x=-10\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{5}{7}\end{cases}}\)

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

a) 

 \(\begin{matrix}N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\^-M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\\overline{N\left(x\right)-M\left(x\right)=-3x^4+18x^3-2x^2-4x-1}\end{matrix}\)

b) 

   \(\begin{matrix}M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\^+N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\\overline{M\left(x\right)+N\left(x\right)=-5x^4+14x+\dfrac{5}{3}}\end{matrix}\)

 

24 tháng 12 2022

\(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)
\(=\dfrac{1}{3}+\left(\dfrac{12}{67}-\dfrac{79}{67}\right)+\left(\dfrac{13}{41}+\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\left(-1\right)+1=\dfrac{1}{3}+0=\dfrac{1}{3}\)
\(\left(\dfrac{15}{4}-5x\right).\left(9x^2-4\right)=0\)
\(\left[{}\begin{matrix}\dfrac{15}{4}-5x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}5x=\dfrac{15}{4}\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)

a) Ta có: \(\left|2x-1\right|=\left|2x+3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2x+3\left(loại\right)\\2x-1=-2x-3\end{matrix}\right.\Leftrightarrow2x+2x=-3+1\)

\(\Leftrightarrow4x=-2\)

hay \(x=-\dfrac{1}{2}\)

12 tháng 4 2022

a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)

\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)

\(=x^2-9x+14\)

\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)

\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)

\(=x^6+2x^2+3\)

b) Đa thức M(x) có hệ số cao nhất là 1 

                                hệ số tự do là 14

                                bậc 2

 Đa thức N(x) có hệ số cao nhất là 1 

                            hệ số tự do là 3 

                            bậc 6

4 tháng 9 2019

\(|5x-3|=|7-x|\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=7-x\\5x-3=x-7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}6x=10\\4x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)

Vậy ...

4 tháng 9 2019

\(\left|5x-3\right|=\left|7-x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=7-x\\5x-3=-\left(7-x\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+x=7+3\\5x-x=-7+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}6x=10\\4x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)

Vậy : \(x\in\left\{\frac{5}{3},-1\right\}\)

13 tháng 7 2018

1, \(\left|\frac{3}{2}x-1\right|-2x=1\Rightarrow\left|\frac{3}{2}x-1\right|=1+2x\)

Vì \(\left|\frac{3}{2}x-1\right|\ge0\Leftrightarrow1+2x\ge0\Leftrightarrow x\ge\frac{-1}{2}\)

\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-1=1+2x\\\frac{3}{2}x-1=-1-2x\end{cases}\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-2x=1+1\\\frac{3}{2}x+2x=-1+1\end{cases}\Rightarrow}\orbr{\begin{cases}\frac{-1}{2}x=2\\\frac{7}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-4\left(ktm\right)\\x=0\left(tm\right)\end{cases}}}\)

Vậy x = 0 

2,3 tương tự 1

4, Vì \(\left|x\left(x^2-\frac{5}{4}\right)\right|\ge0\Rightarrow x\ge0\)

Ta có: \(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\Rightarrow x\left(x^2-\frac{5}{4}\right)=\pm x\) (1)

- Nếu x = 0 thì 0 = 0 thỏa mãn (1)

- Nếu \(x\ne0\) thì \(\left(1\right)\Leftrightarrow\orbr{\begin{cases}x^2-\frac{5}{4}=1\\x^2-\frac{5}{4}=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{4}\\x^2=\frac{1}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}}\)

Vì \(x\ge0\Rightarrow x\in\left\{0;\frac{1}{2};\frac{3}{2}\right\}\)

Vậy...

NV
28 tháng 3 2021

Đề bài ko đúng em, tử số bên trái là 32 mới hợp lý chứ không phải 3.2

Ta có: \(\left|5x+7\right|+\left|5x-1\right|=\left|5x+7\right|+\left|1-5x\right|\ge\left|5x+7+1-5x\right|=8\) (1)

\(\left(2y+1\right)^{2020}\ge0\Rightarrow3\left(2y+1\right)^{2020}+4\ge4\)

\(\Rightarrow\dfrac{32}{3\left(2y+1\right)^{2020}+4}\le\dfrac{32}{4}=8\) (2)

Từ (1); (2) \(\Rightarrow\left|5x+7\right|+\left|5x-1\right|\ge\dfrac{32}{3\left(2y+1\right)^{2020}+4}\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(5x+7\right)\left(1-5x\right)\ge0\\2y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{7}{5}\le x\le\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)