Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c bất kì. chứng minh rằng:
(a+b+c)2≥3(ab+bc+ca)
(a+b+c)2 ≥ 3(ab+bc+ca) (*)
=>a2+b2+c2+2ab+2bc+2ca ≥ 3ab+3bc+3ca
=>a2+b2+c2 ≥ ab+bc+ca
nhân 2 vào cho 2 vế ta được:
2a2+2b2+2c2 ≥ ≥ 2ab+2bc+2ca
=> (a+b)2+(b+c)2+(c+a)2 ≥ 0 (luôn đúng)
=> (*) đúng
(a+b+c)2 ≥ 3(ab+bc+ca) (*)
=>a2+b2+c2+2ab+2bc+2ca ≥ 3ab+3bc+3ca
=>a2+b2+c2 ≥ ab+bc+ca
nhân 2 vào cho 2 vế ta được:
2a2+2b2+2c2 ≥ ≥ 2ab+2bc+2ca
=> (a+b)2+(b+c)2+(c+a)2 ≥ 0 (luôn đúng)
=> (*) đúng