Cho 4 số a, b, c,d thỏa mãn:
a+b+c+d=0 và ab+ac+ad+bc+bd+cd=0
Chứng minh rằng: a=b=c=d.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)
\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)
\(ac-bd=\left(a+b\right)\left(b+c\right)\)
Từ 3 điều trên ta suy ra đpcm
theo bài ra ta có:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\\ \Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}\)
áp dụng tính chất dãy tỉ số bàng nhau ta có:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}=\dfrac{2ab}{2cd}=\dfrac{a^2+b^2+2ab}{c^2+d^2+2cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\\ \Rightarrow\dfrac{c\left(a+b\right)}{a\left(c+d\right)}=\dfrac{b\left(c+d\right)}{d\left(a+b\right)}\\ \Rightarrow\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}\)áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{ca+cb}{ca+ad}=\dfrac{bc+bd}{ad+bd}=\dfrac{\left(ca+cb\right)-\left(bc+bd\right)}{\left(ca+ad\right)-\left(ad+bd\right)}=\dfrac{ca-bd}{ca-bd}=1\\ \Rightarrow ca+cb=ca+ad\\ \Rightarrow cb=ad\\ \Rightarrow ad=bc\left(đpcm\right)\)
\(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\)
\(\Leftrightarrow ac+bd=\left(b+d\right)^2-\left(a-c\right)^2\)
\(\Leftrightarrow ac+bd=b^2+d^2+2bd-a^2-c^2+2ac\)
\(\Leftrightarrow a^2-c^2=b^2+d^2+ac+bd\) (1)
Ta có
\(\left(ab+cd\right)\left(ad+bc\right)=a^2bd+ab^2c+acd^2+bc^2d=\)
\(=bd\left(a^2+c^2\right)+ac\left(b^2+d^2\right)\) (2)
Thay (1) vào (2)
\(\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2+ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2\right)+bd\left(ac+bd\right)+ac\left(b^2+d^2\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(b^2+d^2\right)\left(ac+bd\right)+bd\left(ac+bd\right)\)
\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(ac+bd\right)\left(b^2+d^2+bd\right)\) (3)
Do \(a>b>c>d\)
\(\Rightarrow\left(a-d\right)\left(b-c\right)>0\Leftrightarrow ab-ac-bd+cd>0\)
\(\Leftrightarrow ab+cd>ac+bd\) (4)
Và
\(\left(a-b\right)\left(c-d\right)>0\Leftrightarrow ac-ad-bc+bd>0\)
\(\Leftrightarrow ac+bd>ad+bc\) (5)
Từ (4) và (5) \(\Rightarrow ab+cd>ad+bc\)
Ta có
(3)\(\Leftrightarrow b^2+d^2+bd=\dfrac{\left(ab+cd\right)\left(ad+bc\right)}{\left(ac+bd\right)}\) (6)
Vế trái là số nguyên => vế phải cũng phải là số nguyên
Giả sử ab+cd là số nguyên tố mà \(ab+cd>ac+bd\)
\(\Rightarrow UC\left(ab+cd;ac+bd\right)=1\) => ab+cd không chia hết cho ac+bd
=> để vế phải của (6) là số nguyên \(\Rightarrow ad+bc⋮ac+bd\Rightarrow ad+bc>ac+bd\) Mâu thuẫn với (5) nên giả sử sai => ab+cd không thể là số nguyên tố
mình là người mới ,cho mình hỏi làm sao để kiếm xu đổi quà
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) (1)
Ta lại có : \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) ; (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (ĐPCM)