Cho x, y là các số khác 0. Biết x+\(\frac{1}{y}\) và y+\(\frac{1}{x}\)là các số nguyên, chứng tỏ rằng A=x3y3 + \(\frac{1}{x^3+y^3}\)cũng là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{6}=\frac{2x-y}{6-4}=\frac{20}{2}=10\)
Từ \(\frac{x}{3}=10=>x=30\)
Từ \(\frac{y}{4}=10=>y=40\)
Từ \(\frac{z}{5}=10=>z=50\)
Vậy x=30,y=40,z=50
b)Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(=>\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>a=b=c}}\)
Đpcm
a)Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}\)= \(\frac{y}{4}\)= \(\frac{z}{5}\)=\(\frac{2x-y}{\left(3\cdot2\right)-5}\)=\(\frac{20}{1}\)=20
-> \(\frac{x}{3}\)= 20 ->x=20*3=60
\(\frac{y}{4}\)=20->y=20*4=80
\(\frac{z}{5}\)=20->z=20*5=100
Vậy x=60, y=80, z=100.
\(M=\frac{\left(x^2-1\right)\left(x+1\right)+\left(y^2-1\right)\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\frac{x^3+x^2-x-1+y^3+y^2-y-1}{xy+x+y+1}\)
\(=\frac{\left(x^3+y^3\right)+\left(x^2+y^2\right)-\left(x+y\right)-2}{xy+x+y+1}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2-2xy-\left(x+y\right)-2}{xy+x+y+1}\)
\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+x^2\left(x+y\right)+y^2\left(x+y\right)-2xy\left(x+y\right)-2\left(x+y\right)-2xy-2}{xy+x+y+1}\)
\(=\frac{\left(x+y\right)\left(x+y+xy+1\right)+\left(x^2+y^2-2xy\right)\left(x+y\right)-2\left(x+y+xy+1\right)}{xy+x+y+1}\)
\(=\frac{\left(x+y-2\right)\left(x+y+xy+1\right)+\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}=x+y-2+\frac{\left(x-y\right)^2\left(x+y\right)}{xy+x+y+1}\)
x,y nguyên do đó để \(M\)nguyên thì \(\left(x-y\right)^2\left(x+y\right)\)chia hết cho \(xy+x+y+1\)
Dễ thấy \(\left(x-y\right)^2\left(x+y\right)\)không thể phân tích thành nhân tử \(xy+x+y+1\)nữa nên \(\left(x-y\right)^2\left(x+y\right)=0\)
Suy ra:
\(\hept{\begin{cases}x-y=0\\x+y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y\\x=-y\end{cases}}\)
Vậy:
\(x^2y^2-1=x^2.x^2-1=x^4-1\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)chia hết cho \(\left(x+1\right)\)
Vậy ta có đpcm
Ta có:
1-z/x=x/x-z/x=(x-z)/x(1)
1-x/y=y/y-x/y=(y-x)/y(2)
1+y/z=z/z+y/z=(y+z)/z(3)
Mà x-y-z=0( theo đề)
=>x-z=y(*)
x-y=z=>y-x=-z ( số đối) (**)
y+z=x(***)
Thay (*),(**),(***) lần lượt vào (1),(2),(3) ta đc:
A=(1-z/x)(1-x/y)(1+y/z)=(x-z)/x.(y-x)/y.(z+y)/z=y/x.(-z/y).x/z
=y.(-z).x/x.y.z=y.z.(-1).x/x.y.z=-1
Vậy A=-1
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
Khi đó ta chứng minh được :
\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)
Mà \(x+y+z=0\)
\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)
Từ đó ta suy ra :
\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)
\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)
\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)
\(=xyz\)( ĐPCM )
Hên xui thôi
x,y deu =12
x,y=10