2^3+4(x-2)=(-4)^2:2
Help's me!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,2/3 + 4/-5 x 20/16 =-1/3
b,(1/3+4/6).(2/7+9/14)=13/14
c,(2/3 - 3/4).(1/2- -3/5)=-11/120
a,2/3 + 4/-5 x 20/16
=2/3-1
=-1/3
b,(1/3+4/6).(2/7+9/14)
=1.13/14
=13/14
c,(2/3 - 3/4).(1/2- -3/5)
=-1/12.-1/10
=1/120
\(x:\dfrac{3}{4}\) = \(\dfrac{9}{14}-\dfrac{1}{7}\)
\(x:\dfrac{3}{4}\) = \(\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\) x \(\dfrac{3}{4}\)
\(x=\dfrac{3}{8}\)
\(x\)x \(\dfrac{1}{2}-\dfrac{1}{4}\)=\(\dfrac{2}{3}\)
\(x\) x \(\dfrac{1}{4}\) =\(\dfrac{2}{3}\)
\(x\) = \(\dfrac{2}{3}:\dfrac{1}{4}\)
\(x\) \(\dfrac{8}{3}\)
\(a,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\\ =\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\\ =\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\\=2\sqrt{2} \)
\(b,=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)
\(c,=x-4+\sqrt{\left(4^2-2.4.x+x^2\right)}\\ =x-4+\sqrt{\left(4-x\right)^2}\\ =x-4+\left|4-x\right|\\ =x-4+x-4=2x-8\) (vì \(x>4\) )
@seven
Nguyễn Trà My
Phần a)
\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)
\(32-3x+13=76-x\)
\(116-3x=76-x\)
\(116-76=3x-x\)
\(46=2x\)
\(x=46\div2\)
\(x=13\)
\(\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{4}{3}+\dfrac{19}{3}=\dfrac{1+2+4+19}{3}=\dfrac{26}{3}\)
\(\dfrac{3}{4}+\dfrac{4}{4}+\dfrac{5}{4}+\dfrac{6}{4}+\dfrac{x}{4}+\dfrac{8}{2}+\dfrac{9}{4}\)
=\(\dfrac{3}{4}+\dfrac{4}{4}+\dfrac{5}{4}+\dfrac{6}{4}+\dfrac{x}{4}+\dfrac{16}{4}+\dfrac{9}{4}\)
=\(\dfrac{3+4+5+6+x+16+9}{4}=\dfrac{43+x}{4}\)
Cảm ơn và chúc Lê Minh Quang học tốt nhé!
Mình đã tick rùi nha
Thanks
a:
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
=>|x-3|=3
=>x-3=3 hoặc x-3=-3
=>x=0 hoặc x=6
b: \(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
=>\(\left|\sqrt{x-1}+1\right|=2\)
=>\(\left[{}\begin{matrix}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\left(loại\right)\end{matrix}\right.\Leftrightarrow\sqrt{x-1}=1\)
=>x-1=1
=>x=2
c:
ĐKXĐ: x>4/5
PT \(\Leftrightarrow\sqrt{\dfrac{5x-4}{x+2}}=2\)
=>\(\dfrac{5x-4}{x+2}=4\)
=>5x-4=4x+8
=>x=12(nhận)
d: ĐKXĐ: x-4>=0 và x+1>=0
=>x>=4
PT =>\(\left(\sqrt{x-4}+\sqrt{x+1}\right)^2=5^2=25\)
=>\(x-4+x+1+2\sqrt{\left(x-4\right)\left(x+1\right)}=25\)
=>\(\sqrt{4\left(x^2-3x-4\right)}=25-2x+3=28-2x\)
=>\(\sqrt{x^2-3x-4}=14-x\)
=>x<=14 và x^2-3x-4=(14-x)^2=x^2-28x+196
=>x<=14 và -3x-4=-28x+196
=>x<=14 và 25x=200
=>x=8(nhận)
a) \(\sqrt{x^2-6x+9}=3\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=3\)
\(\Leftrightarrow\left|x-3\right|=3 \)
TH1: \(\left|x-3\right|=x-3\) với \(x\ge3\)
Pt trở thành:
\(x-3=3\) (ĐK: \(x\ge3\))
\(\Leftrightarrow x=3+3\)
\(\Leftrightarrow x=6\left(tm\right)\)
TH2: \(\left|x-3\right|=-\left(x-3\right)\) với \(x< 3\)
Pt trở thành:
\(-\left(x-3\right)=3\) (ĐK: \(x< 3\))
\(\Leftrightarrow x-3=-3\)
\(\Leftrightarrow x=-3+3\)
\(\Leftrightarrow x=0\left(tm\right)\)
b) \(\sqrt{x+2\sqrt{x-1}}=2\) (ĐK: \(x\ge1\))
\(\Leftrightarrow x+2\sqrt{x-1}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4-x\)
\(\Leftrightarrow4\left(x-1\right)=16-8x+x^2\)
\(\Leftrightarrow4x-4=16-8x+x^2\)
\(\Leftrightarrow x^2-12x+20=0\)
\(\Leftrightarrow\left(x-10\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
c) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (ĐK: \(x\ge\dfrac{4}{5}\))
\(\Leftrightarrow\dfrac{5x-4}{x+2}=4\)
\(\Leftrightarrow5x-4=4x+8\)
\(\Leftrightarrow x=12\left(tm\right)\)
23 + 4( x - 2 ) = ( -4 )2 : 2
8 + 4( x - 2 ) = 16 : 2 = 8
4( x - 2 ) = 8 - 8 = 0
x - 2 = 0 : 4 = 0
x = 0 + 2 = 2