Tìm m để hai bất phương trình sau có cùng tập nghiệm
3mx - 2m > x+1
m - 2x <0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bpt (1) : x> \(\frac{2m}{3m-1}\); bpt (2) : x > \(\frac{m}{2}\)
de 2 bpt co cung tap nghiem thi \(\frac{2m}{3m-1}\)= \(\frac{m}{2}\)(3) voi dk m # \(\frac{1}{3}\)
giai pt (3) tim duoc m= 0 , m = \(\frac{5}{3}\)thoa dieu kien m # \(\frac{1}{3}\)
a: =>2,5x-0,5-4,5+2m(x-2)
=>2,5x+2mx-4m-5=0
=>x(2m+2,5)=4m+5
=>x(4m+5)=8m+10
TH1: m=-5/4
=>Phương trình có vô số nghiệm
=>Nhận
TH2: m<>-5/4
Phương trình có nghiệm duy nhất là x=(8m+10)/(4m+5)=2(loại)
b: =>\(\dfrac{3mx+12m+5}{9m^2-1}=\dfrac{\left(2x-3\right)\left(3m-1\right)+\left(3x-4m\right)\left(3m+1\right)}{\left(3m-1\right)\left(3m+1\right)}\)
=>6xm-2x-9m+3+9xm+3x-12m^2-4m=3mx+12m+5
=>-12m^2+15xm+x-13m+3-3mx-12m-5=0
=>-12m^2+x(15m+1-3m)-25m-2=0
=>x(12m+1)=12m^2+25m+2
=>x(12m+1)=(m+2)(12m+1)
Th1: m=-1/12
=>PT luôn có nghiệm
=>Nhận
TH2: m<>-1/12
Để phương trình có nghiệm âm thì m+2<0
=>m<-2
Phương trình (m – 1) x 2 + 3mx + 2m + 1 = 0 (a = m – 1; b = 3m; c = 2m + 1)
Ta có
∆ ' = ( 3 m ) 2 – 4 . ( 2 m + 1 ) . ( m – 1 ) = m 2 – 4 m + 4 = ( m – 2 ) 2
Gọi x 1 ; x 2 là hai nghiệm của phương trình, theo hệ thức Vi-ét ta có
P = x 1 . x 2 = 2 m + 1 m − 1
Phương trình có hai nghiệm cùng dấu khi a ≠ 0 Δ ≥ 0 P > 0 ⇔ m − 1 ≠ 0 m − 2 2 ≥ 0 ( l u o n d u n g ) 2 m + 1 m − 1 > 0
⇔ m ≠ 1 2 m + 1 m − 1 > 0
Ta có
2 m + 1 m − 1 > 0 ⇔ 2 m + 1 > 0 m − 1 > 0 2 m + 1 < 0 m − 1 < 0 ⇔ m > − 1 2 m > 1 m < − 1 2 m < 1 ⇔ m > 1 m < − 1 2
Vậy m > 1 m < − 1 2 là giá trị cần tìm
Đáp án: D