cho hình tam giác ABC .E la 1 điểm nằm trên cạn BCsao cho CE = 5 cm vuông .Và kếm s ABC là 25 cm vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
Kết quả bài này là 90 cm2
Giải bài này dài lắm nên mk ko giải ra đc đâu
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC;AB^2=BH\cdot BC;AC^2=CH\cdot CB\)
=>\(AH=\sqrt{9\cdot25}=15\left(cm\right);AB=\sqrt{9\cdot34}=3\sqrt{34}\left(cm\right);AC=\sqrt{25\cdot34}=5\sqrt{34}\left(cm\right)\)
b: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
ΔHAB vuông tại H có HE là đường cao
nên AE*AB=AH^2
=>AE*3căn 34=15^2
=>\(AE=\dfrac{75}{\sqrt{34}}\left(cm\right)\)
ΔHAC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>\(AF=\dfrac{15^2}{5\sqrt{34}}=\dfrac{45}{\sqrt{34}}\left(cm\right)\)
\(S_{AEHF}=AE\cdot AF=\dfrac{45\cdot75}{34}=\dfrac{3375}{34}\left(cm^2\right)\)
c: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc ACB chung
Do đó: ΔABC\(\sim\)ΔHAC
2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
=>BM/3=CM/4
Áp dụng tính chất của dãy tr số bằng nhau, ta được:
\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)
Do đó: BM=75/7(cm); CM=100/7(cm)